Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.2.075

Thermal Stability of a Nanostructured Exchange-coupled Trilayer  

Lee, Jong-Min (Department of Materials Science and Engineering, Korea University)
Lim, S.H. (Department of Nano Semiconductor Engineering, Korea University)
Abstract
A recent progress on the prediction of the thermal stability of a nanostructured exchange-coupled trilayer is reviewed. An analytical/numerical combined method is used to calculate its magnetic energy barrier and hence the thermal stability parameter. An important feature of the method is the use of an analytical equation for the total energy that contains the magnetostatic fields. Under an assumption of the single domain state, the effective values of all the magnetostatic fields can be obtained by averaging their nonuniform values over the entire magnetic volume. In an equilibrium state, however, it is not easy to calculate the magnetostatic fields at the saddle point due to the absence of suitable methods of the accessing its magnetic configuration. This difficulty is overcome with the use of equations that link the magnetostatic fields at the saddle point and critical fields. Since the critical fields can readily be obtained by micromagnetic simulation, the present method should provide accurate results for the thermal stability of a nanostructured exchange-coupled trilayer.
Keywords
exchange-coupled trilayer; thermal stability; nanostructured magnetic cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).   DOI   ScienceOn
2 K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki,Appl. Phys. Lett. 85, 5634 (2004).   DOI   ScienceOn
3 J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F.Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys. Part 2 44, L1267 (2005).   DOI
4 M. Pakala, Y. Huai, T. Valet, Y. Ding, and Z. Diao, J. Appl. Phys. 98, 056107 (2005).   DOI   ScienceOn
5 D. C. Worledge, Appl. Phys. Lett. 84, 2847 (2004).   DOI   ScienceOn
6 J. K. Han, K. H. Shin, and S. H. Lim, J. Magn. Magn. Mater.310, 2339 (2007).   DOI   ScienceOn
7 J. K. Han, K. H. Shin, and S. H. Lim. J. Appl. Phys. 101,09F506 (2007).   DOI
8 D. H. Lee, C. W. Han, and S. H. Lim, J. Korean Phys. Soc. 54,169 (2009).   DOI   ScienceOn
9 S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T.Hanyu, and H. Ohno, IEEE Trans. Electron Devices 54, 991(2007).   DOI   ScienceOn
10 J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F.Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys. 45,L1057 (2006).   DOI
11 J. K. Han, J. H. NamKoong, and S. H. Lim, J. Phys. D 41,232005 (2008).   DOI   ScienceOn
12 D. C. Worledge, Appl. Phys. Lett. 84, 4559 (2004).   DOI   ScienceOn
13 H. Fujiwara, S. Y. Wang, and M. Sun, J. Appl. Phys. 97,10P507 (2005).   DOI
14 J. Hayakawa, S. Ikeda, K. Miura, M. Yamanouchi, Y. M. Lee,R. Sasaki, M. Ichimura, K. Ito, T. Kawahara, R. Takemura, T.Meguro, F. Matsukura, H. Takahashi, H. Matsuoka, and H.Ohno, IEEE Trans. Magn. 44, 1962 (2008).   DOI   ScienceOn