• Title/Summary/Keyword: Thermal Equilibrium

Search Result 378, Processing Time 0.029 seconds

Adsorption Kinetics of Cupper and Zinc Ion with Na-A Zeolite Synthesized by Coal Fly Ash (석탄 비산재로 합성한 Na-A형 제올라이트에 의한 구리와 아연 이온의 동역학적 흡착 특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1607-1615
    • /
    • 2011
  • The adsorption performance of cupper and zinc ions($Cu^{2+}$ and $Zn^{2+}$) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of $Cu^{2+}$ and $Zn^{2+}$ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed $Cu^{2+}$ and $Zn^{2+}$ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity($q_{max}$) by the Langmuir model was determined as $Cu^{2+}$ 99.8 mg/g and $Zn^{2+}$ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

Numerical Formulation of Thermo-Hydro-Mechanical Interface Element (열-수리-역학 거동 해석을 위한 경계면 요소의 수식화)

  • Shin, Hosung;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.45-52
    • /
    • 2022
  • Because discontinuity in the rock mass and contact of soil-structure interaction exhibits coupled thermal-hydromechanical (THM) behavior, it is necessary to develop an interface element based on the full governing equations. In this study, we derive force equilibrium, fluid continuity, and energy equilibrium equations for the interface element. Additionally, we present a stiffness matrix of the elastoplastic mechanical model for the interface element. The developed interface element uses six nodes for displacement and four nodes for water pressure and temperature in a two-dimensional analysis. The fully coupled THM analysis for fluid injection into a fault can model the complicated evolution of injection pressure due to decreasing effective stress in the fault and thermal contraction of the surrounding rock mass. However, the result of hydromechanical analysis ignoring thermal phenomena overestimates hydromechanical variables.

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

Geochemical characteristics of spring, ground and thermal waters in Mt. Geumjeong-Mt. Baekyang area, Pusan (부산 금정산-백양산 일대 용천수, 지하수 및 지열수의 지화학적 특성)

  • Hamn, Se-Yeong;Cho, Myong-Hee;Hwang, Jin-Yeon;Kim, Jin-Sup;Sung, Ig-Hwang;Lee, Byeong-Dae
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.229-239
    • /
    • 2000
  • Spring, ground and thermal waters in the vicinity of Mt. Geumjeong and Mt. Baekyang area have been sampled and analyzed for major and minor elements. According to the Piper diagram, spring water belongs to $Ca-HCO_3$ and $Na-HCO_3$ types, groundwater to $Ca-HCO_3$ type, and thermal water to Na-Cl type. Based on the phase stability diagrams of $[Ca^{2+}]/{[H^+]}^2, [Mg^{2+}]/{[H^+]}^2, [K^+]/[H^+]$, and $[Na^+]/[H^+] vs. [H_4SiO_4]$, spring water, groundwater and thermal water are mostly in equilibrium with kaolinite. The result of factor analysis shows three factors (factor 1, 2 and factor 3) for the spring water, the groundwater and the thermal water which are represented by the influence of the dissolution of feldspar, calcite, anthropogenic sources (domestic and industrial wastes) and salt water.

  • PDF

Verification of Thermal Characteristics and Overturning Moment for Lateral Vibration System (수평가진 시스템의 열 특성 및 모멘트 성능 검증)

  • Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Moo;Moon, Nam-Jin;Lee, Dong-Woo;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.113-121
    • /
    • 2009
  • Shaker system is used to simulate the vibration from the launch environment. The vibration tests are performed in the vertical and lateral direction. For the lateral vibration test, the slip table system is used with shaker system. For the latest large satellite, vibration test adaptor is made of the steel. But slip table of lateral vibration is made of magnesium, so there is big difference of thermal expansion ratio between slip table and vibration test adaptor. This paper encompasses the following items; verification process of thermal characteristics and overturning moment and a solution for lateral vibration test with steel vibration test adaptor.

  • PDF

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

NUMERICAL SIMULATION OF THERMOCHEMICAL NON-EQUILIBRIUM FLOW AROUND BLUNT BODIES CONSIDERING CATALYTIC WALL EFFECTS (촉매벽 효과를 고려한 무딘 물체 주위의 열화학적 비평형 유동에 대한 수치적 연구)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.87-93
    • /
    • 2013
  • A computational study has been performed to examine the effects of catalytic walls on the stagnation region heat transfer. The boundary conditions for none, finite, and fully catalytic walls have been incorporated into a multi-block compressible Navier-Stokes solver. In the present study, both chemical and thermal non-equilibrium effects were included. The flows over a blunt body model were simulated by varying surface catalytic recombination rates. A full range of catalycities was explored in the context of a constant wall temperature assumption. Detailed information on species concentrations, temperature, and surface heat flux are presented. Comparison with available flight data of surface heat flux is also made.