• Title/Summary/Keyword: Thermal Elastic-Plastic Analysis

Search Result 115, Processing Time 0.022 seconds

A Study on Thermal Stress Analysis of Plastic-Core Solder Balls (플라스틱 핵 솔더볼의 열응력 해석에 관한 연구)

  • Kim, H.D.;Yoon, D.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.159-162
    • /
    • 2007
  • Recently, Pb-free solder ball technology, which is getting more significant in miniaturization of electronic equipment, and resolution of recent environmental problems, is necessary to be developed. A plastic-core solder ball is much promising in those considerations. Plastic-core solder balls have the tendency to replace the usual metal-core solder ball from low material cost and superior mechanical properties. The thermal effects, however, are important in manufacturing process, such as deposing micro-sized metal thin film on the spherical polymer surface. Furthermore plastic-core solder balls are easy to be broken due to CTE and elastic coefficient of material property from heat transfer. We propose technical computational investigations for the manufacturing design and the reliability of plastic-core solder ball from thermal stress analysis.

A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock (가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구)

  • Koo, Bon-Geol;Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF

Fracture Mechanics Analysis of Reactor Pressure Vessel Under Pressurized Thermal Shock-The Effect of Elastic-Plastic Behavior and Stainless Steel Cladding- (원자로 용기의 가압열충격에 대한 파괴역학 해석 - 탄소성 거동과 클래드부의 영향 -)

  • Ju, Jae-Hwang;Gang, Gi-Ju;Jeong, Myeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock(PTS). The PTS event means an event or transient in pressurized water reactors(PWRs) causing severe overcooling(thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored.

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

A STUDY ON WELDING RESIDUAL STRESS BY NUMERICAL SIMULATION ON FRICTION STIR WELDING

  • Bang, Han-Sur;Kim, Heung-Ju;Go, Min-Seong;Chang, Woong-Seong;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.505-510
    • /
    • 2002
  • The Friction Stir Welding (FSW) is a new joining method that was developed at The Welding Institute (TWI) in England in 1991. It applied heating by the rotational friction and material plastic flow. It was developed as a new joining method to solve the problems of epochally in the welding of Al alloys. In the study, 6000series of Alloy composed of AI-Mg-Si, one of the Al alloys that are utilized for shipbuilding and construction, is selected as a specimen and the numerical is executed against the welded zone of FSW. The material used in this study had the unique properties of strength and anti-corrosion, but since the welded joint of this material is easily softened by the welding heat, FSW is executed and the numerical analysis is carried out around the joint. To examine the mechanical behaviors and properties, F.E.M analysis is executed and the developed thermal-elastic-plastic [mite analysis are used.

  • PDF

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Effect of Melting Pool on the Residual Stress of Welded Structures in Finite Element Analysis

  • Lee, Jang-Hyun;Hwang, Se-Yun;Yang, Yong-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.14-23
    • /
    • 2007
  • Welding processes cause undesirable problems, such as residual stresses and deformations due to the thermal loads imposed by local heating, melting, and cooling processes. This paper presents a computational modeling technique to simulate the Gas Metal Arc Welding (GMAW) process, emphasizing the effect of the melting bead on the residual stress distribution. Both a three-bar analogy and a three-dimensional thermo-mechanical finite element analysis are carried out in order to explain the effect. Element (de)activation, enthalpy, and adjustment of the reference temperature of thermal strain are considered with respect to the effect of the weld filler metal added to the base metal during a thermo-elastic-plastic analysis. Stress distributions obtained by the present study are compared with measured values and available data from other studies. The effect of the melting bead on the residual stress distribution is discussed and demonstrated.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldment by Mechanical Loading(I) -Finite Element Analysis-

  • Jang, K.B.;Kim, J.H.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.29-32
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non- coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF