• Title/Summary/Keyword: Thermal Durability

Search Result 509, Processing Time 0.028 seconds

Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating (금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향)

  • Kim, Hye-Seong;Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

An Experimental Study on the Measurement of Temperature and Thermal Stress of Wall Type Mass Concrete Structure (벽체형 매스콘크리트구조물의 온도 및 온도응력측정에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.173-177
    • /
    • 1995
  • Thermal cracks ard occured when thermal stress due to the hydration of cement exceeds the tensile strength of concrete. Since cracking causes poor durability of concrete, the effect of thermal cracking should be included for the desing and construction of massive concrete structures. In this study, an experiments are performed for the investigation of time dependent temperature and thermal stress of massive concrete structure at early ages. In order to measure temperatures and thermal stresses, concrete stress meter, embedded strain meter, non-stress meter, and thermocouples are used. Based on the analyses of measured thermal stress data, measured values by concrete stress meter are more reliable than those by embedded strain meter and non-stress meter, And measured values by concrete stress meter are compared with the calculated values by FEM program developed by DICT (DWTS2D). Calculated values by DWTS2D show good agreement with measured values.

  • PDF

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

A Study on the Thermal Pump of the Hot Water Boiler (온수 보일러용 열구동 펌프에 관한 연구)

  • Yeom, Han-Gil;Kim, Uk-Joong;Kim, Chang-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.15-23
    • /
    • 2000
  • In this study, develop the thermal pump using water evaporation and condensation. Vapor from heating room moves up to pumping room and press the water of pumping room. Consequently water is pumped out to water tank. Then hot vapor direct contact with cold water in condensing room after pumping process. At this time, pressure of condensing room is down to-5kPa and suck in water of tank. This pump executes self ping and good durability because of no mechanical moving parts. Thermal pump is pumped cyclic so that, this pump is not used single. Therefore thermal pump of hot water boiler used to multi-stage for stable pumping rate. As the result of performance test, the developed thermal pump proves pumping action of water evaporation/condensation. And total volume flow rate is 500liter during one hour. If three thermal pump is installed parallel, this pump can use to the hot water boiler in the 300,000kcal/h class.

  • PDF

The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System (Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰)

  • Choi, Ho-Sang;Park, Young-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.885-888
    • /
    • 1999
  • This study was carried out to determine the reaction kinetic constant of the dehydration - thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ and to investigate the durability during the repeated use of a chemical heat-storage material and the reproducibility of reaction system. The order of the dehydration reaction was 1st-order. The reaction rate was directly proportional to a partial pressure difference of water steam. The kinetic constant was 0.27 and the reproducibility of dehydration reaction for a kinetic constant and a reaction order was excellent. The activity variation in the durability test of a chemical heat-storage material was within range of ${\pm}5%$ during the repeatedly use in several times.

  • PDF

Convergent Investigation through Durability Analysis at the Seam of Railroad Track by Season (계절별 기차선로 이음새에서의 내구성 해석을 통한 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, the structural analysis of the track was performed according to the gap between the rails due to thermal expansion by the frictional contact between the wheels of the train in motion. The equivalent stress and total deformation at the condition for which the gap between joints are wide as the winter condition (model B) can be seen to happen more than at the summer condition (model A) in which the joints are narrow. If the results of this study are applied to the design of railway tracks, it is thought to be highly useful in preventing fatigue failure and increasing its durability. By applying the durability analysis at the seam of railroad track by season, this investigation result is seen to be favorable as the convergent research applied to the aesthetic design.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

A Study on the Analysis of Thermal Durability due to the Configuration of Mortar (박격포의 형상에 따른 열적 내구성의 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-76
    • /
    • 2015
  • This study investigates the thermal efficiency and the efficiency of heat transfer through thermal analysis when the same heat is applied to a mortar frame by firing with various configurations of mortar. As the inside diameter of the mortar increases, the additional material must be reinforced. In comparison with the extent of getting cold due to models, a mortar with the strut under the gun barrel becomes cooler than one with no strut. The thermal deformation at firing becomes different. According to the configuration of mortar and its inside diameter, the extent of getting cold becomes different. This study result can be effectively applied for improving the efficiency of the heat transfer of mortar.

Analysis of Heat of Hydration and Thermal Stresses in Mass Concrete (매스 콘크리트의 수화열과 온도 응력 해석)

  • 박영진;김진근;전상은;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.281-286
    • /
    • 1999
  • Nonlinear temperature distribution induced by the hydration heat generates thermal stress in mass concrete. At early ages, such thermal stress may induce thermal cracks in the structure which can affect on the durability and safety of the structure. Up to now, a lot of works have focused on the prediction of temperature distribution and thermal stress in the structure. In most of such works, however, the inside of structure was considered as adiabatic state to predict temperature distribution and the thermal stress. And due to the lacks of appropriate analysis models after crack, there was little research on the crack occurrence. This paper deals with the prediction of the temperature distribution in the structure using the rate of hydration heat generation and also estimates the behavior of structure before and after cracking due to hydration heat using crack band model.

  • PDF