• Title/Summary/Keyword: Thermal Cycle Test

Search Result 250, Processing Time 0.024 seconds

HAZ TOUGHNESS AND MICROSTRUCTURE IN HIGH NITROGEN AUSTENITIC STAINLESS STEEL

  • Sato, Yoshihiro;Shiotsu, Tomoya;Nakagawa, Takafumi;Kikuchi, Yasushi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • HAZ(Heat Affected Zone of weldm ents) properties were investigated for a high nitrogen austenitic stainless steel with a chemical composition of Fe-0.02C-0.15Si-6.00Mn-10.0Ni-23.0Cr-2.00Mo-0.48N-0.14V. Thermal cycle of HAZ was simulated by the thermal cycle simulator (Gleeble 1500). The heat treatment was applied to the Charpy test size sample without notch under various peak temperatures and/or the holding times condition. V-notch Charpy test was performed at the temperature range of 273~77 K. Metallographic examination also was carried out by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The simulated specimens revealed a slight embrittlement compared with the base materials. The impact toughness of the specimens deteriorated with the decreasing test temperature. The results from Charpy V-notch test, however, showed that significant degradation of absorbed energy caused by brittle fracture was not observed for the specimen tested in the test temperature range.

  • PDF

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

Thermal stress analysis of the turbocharger housing using finite element method (유한요소법에 의한 터보차져 하우징의 열응력 해석)

  • Choi, B.L.;Bang, I.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2011
  • A turbocharger is subjected to rapid temperature changes during thermal cyclic loads. In order to predict the thermo-mechanical failures, it's very important to estimate temperature distributions under the thermal shock test. This paper suggest the finite element techniques with the temperature histories, a constitutive material model and the mechanical constraints to calculate the thermal stresses and plastic strain distributions for the turbine housing. The first step was to develop a simple coupon approach to represent the failure mechanism of the classical design shapes and secondly applied the actual turbocharger to predict and validate the weak locations under the physical engine test.

Electric Degradation of Failure Mode of Solar Cell by Thermal Shock Test (열충격 시험 후 태양전지 파괴 모드에 따른 전기적 특성변화)

  • Kang, Min-Soo;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.327-332
    • /
    • 2013
  • 일본 연구에서는 열충격 시험을 통한 태양전지의 파괴모드에 따른 전기적 특성을 분석하였다. 시편은 Photovoltaic Module을 만들기 전 3 line Ribbon을 Tabbing한 단결정 Solar Cell을 제작하였다. 열충격 시험 Test 1의 온도조건은 저온 $-40^{\circ}C$, 고온 $85^{\circ}C$, Test 2는 저온 $-40^{\circ}C$, 고온 $120^{\circ}C$에서 Ramping Time을 포함하여 각각 15분씩, 총 30분을 1사이클로 500사이클을 각각의 조건으로 수행하였다. 열충격 시험 후 Test 1에서는 4.0%의 효율 감소율과 1.5%의 Fill Factor 감소율을 확인하였으며, Test 2에서는 24.5%의 효율 감소율과 11.8%의 Fill Factor 감소율을 확인하였다. EL(Electroluminescence)촬영 및 단면을 분석한 결과, Test 1과 Test 2 시편 모두 Cell 표면 및 내부에서의 Crack이 발견되었다. 하지만, Test 2의 시험이 Test 1보다 가혹한 온도조건의 시험으로 인해 Test 1에서 나타나지 않았던, Cell 파괴를 Test 2에서 확인하였다. 결국, Test 1에서 효율의 직접적인 감소 원인은 Cell 내부에서의 Crack이며, Test 2에서는 Cell 내부에서의 Crack 및 Cell 파괴로 인한 Cell 자체의 성능저하로 효율이 크게 감소한다는 것을 본 실험을 통하여 규명하였다.

A training of SMA wire for stabilization of two-way behaviors and actuator application (형상기억합금 와이어의 거동 안정화를 위한 트레이닝과 작동기 응용)

  • Kim, Sang-Haun;Yang, Sung-Pil;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.924-927
    • /
    • 2007
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined. Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amount of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Reliability of Various Underfills on BGA package (BGA 패키지에서의 다양한 언더필의 신뢰성 평가)

  • No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.31-33
    • /
    • 2005
  • In this study, the interfacial reactions and electrical properties of the Sn-35(wt%)Pb-2(wt%)Ag/Cu BGA solder joints after the thermal shock test were investigated with three different kinds of the underfill used commercially. The microstructural evolutions of the solder joints were observed using a scanning electron microscopy (SEM) and the electrical resistance of the solder joints were evaluated with the numbers of thermal shock cycle using the four-prove method. The increase in the $Cu_{6}Sn_{5}$ IMC thickness led to the increase in the electrical resistance with increasing the numbers of the thermal shock cycle. The increase in the electrical resistance of the BGA packages with the underfill was smaller than that without the underfill. The silica contained underfill led to the higher electrical resistance.

  • PDF

Low-cycle fatigue in steel H-piles of integral bridges; a comparative study of experimental testing and finite element simulation

  • Karalar, Memduh;Dicleli, Murat
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • Integral abutment bridges (IABs) are those bridges without expansion joints. A single row of steel H-piles (SHPs) is commonly used at the thin and stub abutments of IABs to form a flexible support system at the bridge ends to accommodate thermal-induced displacement of the bridge. Consequently, as the IAB expands and contracts due to temperature variations, the SHPs supporting the abutments are subjected to cyclic lateral (longitudinal) displacements, which may eventually lead to low-cycle fatigue (LCF) failure of the piles. In this paper, the potential of using finite element (FE) modeling techniques to estimate the LCF life of SHPs commonly used in IABs is investigated. For this purpose, first, experimental tests are conducted on several SHP specimens to determine their LCF life under thermal-induced cyclic flexural strains. In the experimental tests, the specimens are subjected to longitudinal displacements (or flexural strain cycles) with various amplitudes in the absence and presence of a typical axial load. Next, nonlinear FE models of the tested SHP specimens are developed using the computer program ANSYS to investigate the possibility of using such numerical models to predict the LCF life of SHPs commonly used in IABs. The comparison of FE analysis results with the experimental test results revealed that the FE analysis results are in close agreement with the experimental test results. Thus, FE modeling techniques similar to that used in this research study may be used to predict the LCF life of SHP commonly used in IABs.

Evaluation by Rocket Combustor of C/C Composite Cooled Structure for Combined-cycle Engine

  • Takegoshi, Masao;Ono, Fumiei;Ueda, Shuichi;Saito, Toshihito;Hayasaka, Osamu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.804-809
    • /
    • 2008
  • In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2900 K and heat flux to the combustion chamber wall was about 9 $MW/m^2$. No thermal damage was observed on the stainless steel tubes which were in contact with the C/C composite materials. Results of the heating test showed that such a metallic-tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure(also as a heat exchanger), as well as indicating the possibility of reducing the amount of the coolant even if the thermal load to the engine is high. Thus, application of the metallic-tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined cycle engine is expected.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성)

  • Park, T.W.;Shim, I.O.;Kim, Y.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF