• Title/Summary/Keyword: Thermal Coupling

Search Result 433, Processing Time 0.026 seconds

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Trend on Development of Polymeric Organosilicone Surfactants (고분자 유기실리콘 계면활성제의 개발 동향)

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.546-567
    • /
    • 2015
  • Silicone-based surfactants consist of a hydrophobic organosilicone group coupled to one or more hydrophilic polar groups, while the hydrophobic groups of hydrocarbon surfactants are hydrocarbons. Silicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability. A wide range of silicone surfactant structures are required to provide the functional diversity for reflecting the necessities in the various applications. This review covers the basic properties and the synthetic schemes of polydimethylsiloxane and reactive polysiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive polysiloxanes to hydrophilic groups, and the synthetic schemes of the main polysiloxane surfactants including polyether-, ionic-, carbohydrate-type surfactants.

Deep Levels in Semi-Insulating GaAs : Cr and Undoped GaAs (SI GaAs : Cr과 Undoped GaAs의 깊은 준위)

  • Rhee, Jin-Koo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1294-1303
    • /
    • 1988
  • Electron and hole traps in semi-insulating GaAs with activation energies ({\Delta}E_r) ranging from 0.16 $\pm$ 0.01 to 0.98 $\pm$ 0.01 eV, have been detected and characterized by photo-induced current transient measurements. SI undoped GaAs has fewer deep levels than SI GaAs: Cr. The thermal capture cross section and density of the traps have been estimated and some of the centers have been related to native defects. In particular, the activation energy of the compensating Cr, and "0" levels in semi-insulating GaAs were accurately measured. The transient measurements were complemented by Hall measurements at T > 300K and photocurrent spectra measurements. The transition energies for the deep compensating levels obtained by the analyses of data from these measurements, when compared with those from the transient measurements, indicate negligible lattice-coupling of these centers. Analysis of the transport data also indicates that neutral impurity scattering plays a significant role in semi-insulating materials at high temperatures.

  • PDF

Induction Heating Device for Dental Implant Removal (인공치아의 임플란트 탈착을 위한 유도가열장치 연구)

  • Lee, Sang-Myung;Seo, Young;Song, Chang-Woo;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.305-311
    • /
    • 2016
  • Induction heating is the process in which an electrically conducting object (usually a metal) is heated by electromagnetic induction through heat generated in the object by eddy currents. The main advantage of an induction heating device is the generation of the heat inside the target object itself. Hence, non-contact and safe heating devices are widely used in many industrial and medical fields. Recently, a new dental implant system was developed using a shape-memory alloy, wherein an artificial tooth could be easily removed from the dental implant by heating. This paper discusses the development of an induction-heating device to remove the dental crown in the new implant system. First, the finite element simulation of electromagnetic and thermal coupling analysis was implemented to obtain the temperature distributions of the target object for various frequencies, input currents, and coil shapes. Based on the simulation results, experiments were conducted by using prototypes, and an induction heating device was developed to remove the dental crown from the implant.

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

The Effect of Burn-out Temperature and Cooling Rate on the Microstructure and Corrosion Behavior of Dental Casting Gold Alloy (치과용 합금 주조 시의 소환온도와 주조 후 냉각방법이 미세조직과 부식거동에 미치는 영향)

  • Lee, Sang-Hyeok;Ham, Duck-Sun;Kim, Hak-Kwan;Jang, Ju-Woong;Kim, Myung-Ho
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.69-78
    • /
    • 2000
  • The microstructure and corrosion behavior of commercially dental casting gold alloys were investigated to clarify the effect of burn-out temperature and cooling rate. In the case of water quenching after casting, only the αphase, which is typical dendritic microstructure of golda alloy, was detected. However, the precipitates along the grain boundary were detected only at the slow cooling rate and they increased inversely proportional to the burn-out temperature. This might be due to the time difference which solute atom could diffuse. EPMA and SEM results also demonstrated that the precipitate should be lamellar structure consisted of Ag rich phase(${\alpha}_1$) and Cu rich phase (${\alpha}_2$). In terms of corrosion, the galvanic coupling was formed due to the difference of composition between precipitates and matrix at the slow cooling rate. In the case of water quenching, the critical current density($i_p$) which indicate the degree of corrosion was lowest at $650^{\circ}C$ and below the burnout temperature, $i_p$ increased with it because of the effect of grain boundary segregation. But above the temperature, $i_p$ increased with it. This may be due to the strain field effect by residual thermal stress.

  • PDF

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

Modification of PLA/PBAT Blends and Thermal/Mechanical Properties (PLA/PBAT 블렌드의 개질과 열적, 기계적 특성)

  • Kim, Dae-Jin;Min, Chul-Hee;Park, Hae-Youn;Kim, Sang-Gu;Seo, Kwan-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.104-111
    • /
    • 2013
  • Poymer blends of two degradable aliphatic polyesters, relatively expensive material polylactic acid (PLA) and relatively inexpensive material poly(butylene adipate-co-terephthalate) (PBAT), were used in this study. Three different kinds of modifiers were used with various amounts. Diisocyanate type methylenediphenyl 4,4'-diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were used as modifiers and epoxy type coupling agents also used. The melt flow index (MFI) and dynamic viscoelasticity of various compositions of PLA/PBAT blends were studied. The mechanical property and morphology with respect to the fracture surface of PLA/PBAT blends were also investigated using tensile test and field emission scanning electronic microscopy, respectively. These tests were also used to verify the compatibility of PLA/PBAT and the effect of mechanical properties due to the use of modifiers. Tensile properties of PLA/PBAT blends modified with HDI were improved remarkably.

Effect of Types of Colloidal Silica on Properties of Hydrophilic Coating Films (콜로이드 실리카 종류가 친수성 코팅 필름의 물성에 미치는 영향)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.830-836
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, GPTMS (3-glycidoxypropyl trimethoxysilane) with colloidal silica. Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by spin-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of average particle sizes of colloidal silica was studied on the properties of coating films. As a result, coating film, prepared from colloidal silica with average particle size of 25 nm, showed a low contact angle of $20^{\circ}$ and a good pencil hardness of H. On the other hand, coating films, prepared from colloidal silica with average particle sizes of 15 nm and 45 nm, exhibited high contact angles of $27^{\circ}$ and $36^{\circ}$ and pencil hardness of H and B, respectively.

Study on the properties of temperature distribution at the split-disk geometry glass laser amplifier (분할디스크형 글라스레이저 증폭기의 온도분포특성에 관한 연구)

  • 김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • The simulation code was developed for the development of the split-disk geometry glass amplifier, which could design the laser apparatus and analyze the properties of the laser system. The flashlamp emission energy at the short wavelength region must be reduced, while maintaining a current density between 2000 and 4000 A/$\textrm{cm}^{2}$, in order to reduce the thermal loading in the laser glass and to raise the coupling efficiency between the emission spectrum of the flashlamps and the absorption spectrum of the laser glass. By cutting the laser glass into three equal pieces, the temperature rise in the laser glass dropped by 70% due to the efficient removal of the heat in the laser glass. It was found that the $Nd^{3+}$ doping rate of each laser glass should be properly selected and the optimum value of the product of the absorption coefficient $\alpha$ and the thickness d of the laser glass is about 0.26 in the split-disk geometry.

  • PDF