Browse > Article
http://dx.doi.org/10.12656/jksht.2015.28.5.229

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys  

Moon, Jung-Hyun (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
Jun, Joong-Hwan (Advanced Process and Materials R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.28, no.5, 2015 , pp. 229-238 More about this Journal
Abstract
The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.
Keywords
AZ91; Sn; Microstructure; Corrosion resistance; ${\beta}$ phase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. L. Mordike and T. Ebert : Mater. Sci. Eng. A, 302 (2001) 37.   DOI
2 K. V. Yang, M. A. Easton and C.H. Caceres : Mater. Sci. Eng. A, 580 (2013) 191.   DOI
3 Y. B. Jiang, L. Guan, G. Y. Tang and Z. H. Zhang : J. Alloys Compd., 626 (2015) 297.   DOI
4 L. Wang, B. P. Zhang and T. Shinohara : Mater. Des., 31 (2010) 857.   DOI
5 A. A. Luo : Int. Mater. Rev., 49 (2004) 13.   DOI
6 K. M. Asi, A. Tari and F. Khomamizadeh : Mater. Sci. Eng. A, 523 (2009) 1.   DOI
7 A. Srinivasan, J. Swaminathan, U. T. S. Pillai, K. Guguloth and B.C. Pai : Mater. Sci. Eng. A, 485 (2008) 86.   DOI
8 K. Hirai, H. Somekawa, Y. Takigawa and K. Higashi : Mater. Sci. Eng. A, 403 (2005) 276.   DOI
9 B. H. Kim, S. W. Lee, Y. H. Park and I. M. Park : J. Alloys Compd., 493 (2010) 502.   DOI
10 W. W. Du, Y. S. Sun, X. G. Min, F. Xue, M. Zhu and D. Y. Wu : Mater. Sci. Eng. A, 356 (2003) 1.   DOI
11 R. Mahmudi and S. Moeendarbari : Mater. Sci. Eng. A, 566 (2013) 30.   DOI
12 A. A. Luo, P. Fu, L. Peng, X. Kang, Z. Li and T. Zhu : Metall. Mater. Trans. A, 43A (2012) 360.
13 N. D. Nam : J. Magnesium Alloys, 2 (2014) 190.   DOI
14 K. C. Park, B. H. Kim, H. Kimura, Y. H. Park and I. M. Park : Mater. Trans., 51 (2010) 472.   DOI
15 W. Zhou, T. Shen and N. N. Aung : Corros. Sci., 52 (2010) 1035.   DOI
16 J. H. Jun and I. J. Hwang : J. Kor. Soc. Heat Treat., 28 (2015) 126.   DOI
17 J. H. Moon and J. H. Jun : J. Kor. Soc. Heat Treat., in press.
18 Z. M. Shi, M. Liu and A. Atrens : Corros. Sci., 52 (2010) 579.   DOI
19 Y. Wang, M. Xia, Z. Fan, X. Zhou and G. E. Thompson : Intermetallics, 18 (2010) 1683.   DOI
20 M. C. Zhao, P. Schmutz, S. Brunner, M. Liu, G. L. Song and A. Atrens : Corros. Sci., 51 (2009) 1277.   DOI
21 W. H. Slabaugh and M. Grotheer : Indust. Eng. Chem., 46 (1954) 1014.   DOI
22 R. Udhayan and D. P. Bhatt : J. Power Sources, 63 (1996) 103.   DOI
23 W. J. Lee and S. I. Pyun : J. Corros. Sci. Soc. Kor., 26 (1997) 120.
24 F. Mansfeld and C. H. Tsai : Corros., 47 (1991) 958.   DOI