• Title/Summary/Keyword: Thermal Control Unit

Search Result 167, Processing Time 0.023 seconds

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

An experimental study on performance evaluation for development of compact steam unit applied with hybrid plate heat exchanger (하이브리드 판형 열교환기 적용 컴팩트 스팀 유닛 개발을 위한 성능 평가에 관한 실험적 연구)

  • Park, Jae-Hong;Cho, Sung-Youl;Lee, Jun-Seok;Lee, Sang-Rae;Kim, Seung-Hyun;Lim, Gye-Hun;Seo, Jung-Wan;Kim, Jeung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.296-301
    • /
    • 2017
  • In various industrial places such as power generation plants, petrochemical and unit factories, the demands of systems that produce hot water by utilizing wasted or surplus steam have been increased. Compact steam unit(CSU) is a system that can meet these demands and produce hot water by using surplus or wasted steam, and it is also one of the good solutions in view of energy reuse. The new CSU with a capacity of 1,600 kW was developed with a hybrid plate heat exchanger of which thermal performances are better than a conventional plate heat exchanger, an improved temperature control valve, a user-friendly control system, and other components in this study. The purpose of this study was to obtain performance data of the new CSU through various experiments and utilize them for the CSU commercialization. The experimental results show that heat balances between the hot side(steam) and the cold side(cold water) were within ${\pm}0.77%$, and the fluctuations of outlet temperature of the secondary side which are one of the most important evaluation factors in the CSU were $(0{\sim}0.3)^{\circ}C$.

CFD Analysis of a Concept of Nuclear Hybrid Heat Pipe with Control Rod (원자로 제어봉과 결합된 하이브리드 히트파이프의 CFD 해석)

  • Jeong, Yeong Shin;Kim, Kyung Mo;Kim, In Guk;Bang, In Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.109-114
    • /
    • 2014
  • After the Fukushima accident in 2011, it was revealed that nuclear power plant has the vulnerability to SBO accident and its extension situation without sufficient cooling of reactor core resulting core meltdown and radioactive material release even after reactor shutdown. Many safety systems had been developed like PAFS, hybrid SIT, and relocation of RPV and IRWST as a part of steps for the Fukushima accident, however, their applications have limitation in the situation that supply of feedwater into reactor is impossible due to high pressure inside reactor pressure vessel. The concept of hybrid heat pipe with control rod is introduced for breaking through the limitation. Hybrid heat pipe with control rod is the passive decay heat removal system in core, which has the abilities of reactor shutdown as control rod as well as decay heat removal as heat pipe. For evaluating the cooling performance hybrid heat pipe, a commercial CFD code, ANSYS-CFX was used. First, for validating CFD results, numerical results and experimental results with same geometry and fluid conditions were compared to a tube type heat pipe resulting in a resonable agreement between them. After that, wall temperature and thermal resistances of 2 design concepts of hybrid heat pipe were analyzed about various heat inputs. For unit length, hybrid heat pipe with a tube type of $B_4C$ pellet has a decreasing tendency of thermal resistance, on the other hand, hybrid heat pipe with an annular type $B_4C$ pellet has an increasing tendency as heat input increases.

A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode (GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구)

  • Seo, Jeong-A;Shin, Young-Gy;Oh, Se-Je;Jeong, Sang-Duck;Ji, Kyoung-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.

Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats

  • Bakare, Ahmed Olalekan;Owoyele, Bamidele Victor
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • Background: The continuous search for a novel neuropathic pain drug with few or no side effects has been a main focus of researchers for decades. This study investigated the antinociceptive and neuroprotective effects of bromelain in sciatic nerve ligation-induced neuropathic pain in Wistar rats. Methods: Forty-eight Wistar rats randomly divided into eight groups comprised of six animals each were used for this study. Peripheral neuropathy was induced via chronic constriction of the common sciatic nerve. Thermal hyperalgesic and mechanical allodynia were assessed using a hotplate and von Frey filaments, respectively. The functional recovery and structural architecture of the ligated sciatic nerve were evaluated using the sciatic functional index test and a histological examination of the transverse section of the sciatic nerve. The neuroprotective effects of bromelain were investigated in the proximal sciatic nerve tissue after 21 days of treatment. Results: Bromelain significantly (P < 0.05) attenuated both the thermal hyperalgesia and mechanical allodynic indices of neuropathic pain. There were improvements in sciatic function and structural integrity in rats treated with bromelain. These rats showed significant (P < 0.05) increases in sciatic nerve nuclear transcription factors (nuclear factor erythroid-derived-2-related factors-1 [NrF-1] and NrF-2), antioxidant enzymes (superoxide dismutase and glutathione), and reduced membranelipid peroxidation compared with the ligated control group. Conclusions: This study suggest that bromelain mitigated neuropathic pain by enhancing the activities of nuclear transcription factors (NrF-1 and NrF-2) which increases the antioxidant defense system that abolish neuronal stress and structural disorganization.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

Energy Consumption and Thermal Comfort Assessment of Conventional Forced-air System According to AHU Discharge Air Temperature (AHU 토출온도에 따른 일반 공조시스템의 에너지 소비량 및 실내 온열환경 분석)

  • Kim, Min Ji;Yeon, Sang Hun;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • Recently, global warming has been a serious issue on the worldwide, and the importance of energy conservation is increasing. In most buildings, energy consumption increases due to cooling, heating, and ventilation. Because of these issues, researches have been carried out to reduce building energy. However, in most conventional forced-air system, the guidelines for the Air Handling Unit (AHU) discharge air temperature are not fully established. The purpose of this study is to assess the impact of AHU discharge air temperature, which is one of the important control variables, on the overall energy consumption and thermal comfort characteristics by modeling conventional forced-air system using EnergyPlus. In addition, recommendations for energy reduction in conventional AHU is provided.

Effect of Partial Replacement of Soybean and Corn with Dietary Chickpea (Raw, Autoclaved, or Microwaved) on Production Performance of Laying Quails and Egg Quality

  • Sengul, Ahmet Yusuf;Calislar, Suleyman
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.323-337
    • /
    • 2020
  • This study was conducted to investigate whether adding different levels of raw or differently processed chickpea into different diets of laying quails affected live weight, feed intake, feed efficiency, egg weight and internal and external egg quality. Chickpea was used as raw, autoclaved or microwave-processed, and it was involved in the diets on two different levels (20% and 40%). The sample was divided into 7 groups including the control, 20% and 40% raw, 20% and 40% autoclaved, and 20% and 40% microwave-processed groups. 336 ten-week-old female laying quails were used in the study, and the experiment continued for 19 weeks. In the study, the differences among the groups were insignificant in terms of live weight, feed intake, feed efficiency, egg weight and egg quality characteristics such as shell thickness, shell weight, yolk weight, yolk color and albumin index. The differences were significant in terms of the shape index, Haugh unit (p<0.05) and yolk index (p<0.01). Consequently, it was observed that different thermal processes on chickpeas did not usually have a significant effect on the yield performance of the quails, and the results that were obtained were similar to the other groups. However, it was determined that some egg quality characteristics were affected by the autoclaving and microwaving processes. Between the thermal processes, it may be stated that autoclaving provided better results.

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF