• 제목/요약/키워드: Thermal Control System

검색결과 1,275건 처리시간 0.026초

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

게인 스케쥴링과 캐스케이드 제어에 의한 가상현실용 열환경의 실시간 구현 (Implementation of Real-Time Thermal Environment for Virtual Reality Using Gain Scheduling and Cascade Control)

  • 신영기;장영수;김영일
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.567-573
    • /
    • 2001
  • A real-time HVAC system is proposed which implements real-time control of thermal environment for virtual reality. It consists of a pair of hot and cold loops that serve as thermal reservoirs, and a mixing box to mix hot and cold air streams flowing if from loops. Their flow rates are controlled in real-time to meet a set temperature and flow rate. A cascade control algorithm along with gain scheduling is applied to the system and test results shows that the closed-loop response approached set values within 3 to 4 seconds.

  • PDF

전자광학카메라 시스템의 열제어계 설계 및 개발 (Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System)

  • 장진수;양승욱;정연황;김이을
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.798-804
    • /
    • 2009
  • (주)쎄트렉아이는 400kg 급 지구관측 위성의 주 탑재체로 사용될 고해상도 전자광학카메라, EOS-C 시스템을 개발 중이다. 이 시스템은 DubaiSat-1 위성의 주 탑재체 개발을 통해 획득한 경험을 토대로 보다 향상된 광기계 및 열적 성능을 갖도록 설계되었다. 민감한 광학부품의 운용상 성능을 유지하기 위해 히터를 이용한 능동 열제어 방식이 적용되었고, 이와 더불어 히터 소모 전력을 최소화하기 위해 열 코팅 및 다층박막단열재(MLI)를 사용한 수동 열제어 방식이 적용되었다. 열해석 모델을 이용해 임무궤도에 대한 열해석을 수행하였으며, 해석 결과를 바탕으로 이 시스템의 열제어계가 설계 요구조건을 만족하는 것을 확인하였다.

태양열 시설원예 난방시스템의 장기성능 특성 분석 연구 (Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system)

  • 이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

A Method for Determining Appropriate Maintenance Intervals of Equipments in Thermal Power Stations

  • Nakamura, Masatoshi;Katafuchi, Tatsuro;Hatazaki, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.312-317
    • /
    • 1998
  • Reliable maintenance scheduling of main equipments is a crucial problem in thermal power stations in order to skirt overall losses of power generation resulted from severe failures of the equipments. A reasonable method was proposed to determine the maintenance scheduling of whole pump system in thermal power stations in order to reduce the maintenance cost by keeping the present avail-ability of the pump system throughout the operation. The dimensional reduction method was used to solve problems encountered due to few data which involved many operational factors in failure rate of pumps. The problem of bandlimited nature of data with time was solved by extrapolating future failures from presently available actual data with an aid of Weibull distribution. The results of the analysis identified the most suitable maintenance intervals of each pump type accordingly and hence reduce the cost of unnecessary maintenance with an acceptable range in the overall system availability.

  • PDF

실시간 제어를 위한 고속 열처리 공정에서 웨어퍼 온도 분포 추정 기법 (A Prediction Method of Temperature Distribution on the Wafer for Real-Time Control in a Rapid Thermal Process System)

  • 심영태;이석주;김학배
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.831-835
    • /
    • 2000
  • The uniformity of themperature on a wafer is a wafer is one the most important parameters to conterol the RTF(Rapid Thermal Process) with proper input signals. It is impossible to achieve the uniformity of temperature without the exact estimation of temperature ar all points on the wafer. There fore, it is difficult to understand the internal dynamics as well as the structural complexities of the RTP, which is aprimary obstacle to measure the distributed temperatures on the wafer accurately. Furthermore, it is also hard to accomplish desirable estimation because only a few pyrometers are available in the general equipments. In the paper, a thermal model based on the chamber grometry of the AST SHS200 RTP system is developed to effectively control the thermal uniformity on the wafer. First of all, the estimation method of one-point measurement is developed, which is properly extended to the case of multi-point measurements. This thermal model is validated through simulation and experiments. The proposed work can be utilized to building a run-by -run or a real-time control of the RTP.

  • PDF

정지궤도위성 광학탑재체 복사 열제어 시스템 개념 설계 (A CONCEPTUAL DESIGN OF RADIATIVE THERMAL CONTROL SYSTEM IN A GEOSTATIONARY SATELLITE OPTICAL PAYLOAD)

  • 김정훈;전형열
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.62-68
    • /
    • 2007
  • A conceptual thermal design is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative thermal control system is employed in order to expect a small thermal gradient in the telescope structure of GOCl. Two design margins are applied to the dedicated radiator dimensioning, and three kinds of configuration to the heater power sizing. A Monte-Carlo ray tracing method and a network analysis method are utilized to calculate radiative couplings and thermal responses respectively. At the level of conceptual design, sizing thresholds are presented for the radiator and heater on the purpose of determining the mass and power budget of the spacecraft.