• 제목/요약/키워드: Thermal Conductivity at High Temperature

검색결과 343건 처리시간 0.025초

Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites (지방족 가교 폴리에스테르-실리카 복합재료의 제조 및 열적특성)

  • Oh, Chang-Jin;Park, Su-Dong;Han, Dong-Cheul;Kwak, Gi-Seop
    • Polymer(Korea)
    • /
    • 제34권5호
    • /
    • pp.424-429
    • /
    • 2010
  • The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of $240^{\circ}C$, the polymer showed an increases in thermal degradation temperature by $30{\sim}90^{\circ}C$ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by $30{\sim}50^{\circ}C$ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.

Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries

  • Kim, Jae-Kwang
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.168-172
    • /
    • 2018
  • This study first investigates the effect of the choice of cation on three different ionic-liquid-based gel polymer electrolytes (ILPEs) with polyimide membranes. The preparation of three ILPEs based on electrospun membranes of PI and incorporating a room-temperature ionic liquid, 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide complexed with lithium bis(trifluoromethylsulfonyl)imide, is described. ILPE-EMImTFSI has an ionic conductivity as high as $5.3{\times}10^{-3}S\;cm^{-1}$ at $30^{\circ}C$. Furthermore, it shows higher thermal stability and electrochemical oxidation stability compared to the other two ILPEs because of its stronger bonds. These results indicate that polyimide-based ILPE-EMImTFSI is a good candidate for use in high-safety rechargeable lithium metal batteries.

Comparative Study on Ablation Characteristics of Ti-6Al-4V Alloy and Ti2AlN Bulks Irradiated by Femto-second Laser (펨토초 레이저에 의한 티타늄 합금과 티타늄질화알루미늄 소결체의 어블레이션특성 비교연구)

  • Hwang, Ki Ha;Wu, Hua Feng;Choi, Won Suk;Cho, Sung Hak;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권7호
    • /
    • pp.97-103
    • /
    • 2019
  • Mn+1AXn (MAX) phases are a family of nano-laminated compounds that possess unique combination of typical ceramic properties and typical metallic properties. As a member of MAX-phase, $Ti_2AlN$ bulk materials are attractive for some high temperature applications. In this study, $Ti_2AlN$ bulk with high density were synthesized by spark plasma sintering method. X-ray diffraction, micro-hardness, electrical and thermal conductivity were measured to compare the effect of material properties both $Ti_2AlN$ bulk samples and a conventional Ti-6Al-4V alloy. A femto-second laser conditions were conducted at a repetition rate of 6 kHz and laser intensity of 50 %, 70% and 90 %, respectively, laser confocal microscope were used to evaluate the width and depth of ablation. Consequently, the laser ablation result of the $Ti_2AlN$ sample than that of the Ti-6Al-4V alloys show a considerably good ablation characteristics due to its higher thermal conductivity regardless of to high densification and high hardness.

Life Evaluation of Nano-Composites According to the Addition of MgO (산화마그네슘 첨가에 따른 나노컴퍼지트의 수명평가)

  • Shin, Jong-Yeol;Jeong, In-Bum;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제28권6호
    • /
    • pp.390-395
    • /
    • 2015
  • Molded insulation materials are widely used from large electric power transformer apparatus to small electrical machinery and apparatus. In this study, by adding MgO with the average particle of several tens nm and the excellent thermal conductivity into molding material, we improved the problem of insulation breakdown strength decrease according to rising temperature in overload or in bad environmental condition. We confirmed the life evaluation by using the insulation breakdown and inverse involution to investigate the electrical characteristics of nano-composites materials. By using a scanning electron microscope, it is confirmed that MgO power with the average particle size of several tens nm is distributed and the filler particles is uniformly distributed in the cross section of specimens. And it is confirmed that the insulation breakdown strength of Virgin specimens is rapidly decreased at the high temperature area. But it is confirmed that the insulation breakdown strength of specimens added MgO slow decreased by thermal properties in the high temperature area improved by the contribution of the heat radiation of MgO and the suppression of tree. The results of life prediction using inverse involution, it is confirmed that the life of nano-composites is improved by contribution of MgO according to the predicted insulation breakdown strength after 10 years of specimens added 5.0 wt% of MgO is increased about 2.9 times at RT, and 4.9 times at $100^{\circ}C$ than Virgin specimen, respectively.

Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Lee, Hong Yeon;Hwang, Hyung Kwon;Lee, Jin Goo;Jeon, Yukwon;Park, Dae-Hwan;Kim, Jong Hak;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • 제19권1호
    • /
    • pp.9-13
    • /
    • 2016
  • Electrospun poly(ether sulfone) (PES) membrane impregnated with Nafion (PES-N) have been developed for high-temperature polymer-electrolyte membrane fuel cell (HT-PEMFC). The PES-N obtains highly thermal stability up to $430^{\circ}C$, which is higher than that of the commercial Nafion 212. The PES-N membrane shows a good proton conductivity of about $10^{-2}S\;cm^{-1}$ in a temperature range from $75^{\circ}C$ to $120^{\circ}C$. The membrane-electrode assembly (MEA) with the PES-N membrane exhibits a current density of $1.697A\;cm^{-2}$ at $75^{\circ}C$, and $0.813A\;cm^{-2}$ at $110^{\circ}C$ when the applied voltage is 0.6 V, whereas the MEA with the Nafion 212 membrane shows the current density of $0.647Acm^{-2}$ at $110^{\circ}C$. The results suggest that the PES-N can be a good candidate for a polymer electrolyte membrane of the HT-PEMFC.

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

The Variation of the Characteristics of DLC Thin films by Pulsed Laser Deposition (레이저 증착변수에 의한 다이아몬드상 카본 박막특성 변화)

  • Pang, Seong-Sik;Lee, Sang-Yeol;Jung, Hae-Suk;Park, Hyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1306-1308
    • /
    • 1998
  • Diamond like carbon(DLC) thin films possesed not only marvelous material charateristics such as large thermal conductivity, high hardness and being chemically inert, but also possesed negative electron affinity(NEA) properties. The NEA is an extremely desirable property of the material used in microelestronics and vacuum microelestronics device. DLC films were fabricated by pulsed laser deposition(PLD). The effect of the laser energy density and the substrate temperature on the properies of DLC films was investigated. The experiment was accomplished at temperatures in the range of room temperature to $400^{\circ}C$. The laser energy density was in the range of $6 J/cm^2$ to $16 J/cm^2$.

  • PDF

The Variation of the Characteristics of DLC Thin films by Pulsed Laser Deposition (레이저 증착변수에 의한 다이아몬드상 카본 박막 특성변화)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제48권5호
    • /
    • pp.344-348
    • /
    • 1999
  • Diamond like carbon(DLC) thin films possesed not only marvelous material characteristics such as large thermal conductivity, high hardness and being chemically inert, but also possesed negative electron affinity (NEA) properties. The NEA is an extremely desirable property of the material used in microelestronics and vacuum microelestronics device. DLC films were fabricated by pulsed laser deposition(PLD). Theeffect of the laser energy density and the substrate temperature on the properies of DLC films was investigated. The experiment was accomplished at temperatures in the range of room temperature to $600^{\circ}C$. The laser energy density was in the range of 6 $J/cm^2$ to 16 $J/cm^2$.

  • PDF

Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature (투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향)

  • Ryu Nam-Hyang;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제34권1호
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

Mechanical Strength and Thermal Conductivity of Silica Aerogels Opacified by Adding Oxides (산화물 첨가에 의한 불투명화 실리카 에어로겔의 기계작 강도 및 열전도도)

  • 손봉희;김계태;현상훈;성대진
    • Journal of the Korean Ceramic Society
    • /
    • 제36권8호
    • /
    • pp.829-834
    • /
    • 1999
  • The silica aerogels opacified via adding oxides were prepared by the sol-gel supercritical drying technique and their characteristics of mechanical strength and thermal conduction were investigated. The compressive strength of SiO2-10 mol% TiO2 and SiO2-10mol% Fe2O3 aerogels were 0.11 and 0.047 MP a respectively much higher than 0.025 MPa of pure silica aerogels. The thermal conductivity of silica aerogels opacified by TiO2 was as low as 0.02505 W/m${\cdot}$K at $400^{\circ}C$ It was found that the TiO2 -opacifier for improving mechanical strength and suppressing high temperature conduction of pure silica aerogels was more effective than the Fe2O3 -opacifier

  • PDF