• 제목/요약/키워드: Thermal Comfort

검색결과 704건 처리시간 0.023초

침상내 기후와 수면과의 관계 (Thermal Comfort and Sleep under Different Room Temperatures)

  • 이영숙
    • 한국의류학회지
    • /
    • 제15권4호
    • /
    • pp.351-365
    • /
    • 1991
  • 본 연구에서는, 수면환경의 열적 쾌적도의 측정방법으로서 생리적 반응 뿐만 아닌 국소자극의 반응에 대한 평가법 (Allesthesial Response)에 의 한 가능성을 제시 하고자 하였다. 피험자는 19세에서 22세의 건강한 독일 여자 대학생 5명이며, 실험은 12월과 1월 독일의 KASSEL에 있는 Marburg대학 연구소의 인공기후실에서 이루어졌다. 사용의복은 면 $100\%$의 잠옷이며, 침구는 메트리스와 Wool 담요(두께 180 mm)를 사용하였다. 국소자극 반응의 온도는 $20.0^{\circ}C,\;22.5^{\circ}C,\;25.0^{\circ}C,\;27.5^{\circ}C,\;30.0^{\circ}C,\;32.5^{\circ}C$의 set가 사용되었으며, 온도자극은 Pottier Thermode type PKE 36 HO2-1 (독일, Peltroil사)로서, 온도의 도달정 밀도는 60내지 90초 동안에 각 자극온도의 변화조절이 가능하였다. 수면환경 온도는 $15^{\circ}C,\;18^{\circ}C,\;21^{\circ}C,\;24^{\circ}C,\;27^{\circ}C$의 다섯 환경으로 조절하였으며, 습도는 RH $45\%$였다. 수면환경 $18^{\circ}C$에서 $24^{\circ}C$까지에서는, 수면전, 수면후 모두, 피험자는 약간의 Hypothermia의 경향을 보였지만 Neutral Situation과 큰 차이는 나타나지 않았다. 수면전과 수면후의 체온조절 반응의 차이가 Allesthesial Response와 국소의 쾌적한 온도 선택의 두 실험결과 모두에서 현저히 나타났다. 생리적 반응의 결과에서도 $18^{\circ}C$에서 $21^{\circ}C$까지의 수면환경이 가장 쾌적하게 나타났다. 또한, 실험결과에서 행동적 온도 조절 반응이 생리적 반응에 앞서 보다 민감하게 이루어짐을 볼 수 있었다

  • PDF

의복을 이용한 내한성 향상 훈련이 내열성에 미치는 영향 (The Relationship between Increased Cold Tolerance Resulting from Cool Clothing on Heat Tolerance)

  • 이종민
    • 한국의류학회지
    • /
    • 제21권4호
    • /
    • pp.669-676
    • /
    • 1997
  • The purpose of this study is to examine the effect of the improved cold tolerance resulting from cool clothing in winter on heat tolerance in summer. Ten healthy women were divided into two groups, cold group(C group) (n=5) and warm group(W group) (n=5) . In the previous study, C group was proved that their cold acclimatization was achieved through wearing cool clothing from September to February of the following year, while Wgroup was not proved because of wearing warm clothing during same period. After February, no more clothing training was continued in two groups. To determine the heat tolerance, both groups were exposed from a thermoneutral environment(25$\pm$1$^{\circ}C$, 50$\pm$5% R.H.) to a hot environment (35$\pm$1$^{\circ}C$, 50$\pm$5% R.H.) before and after clothing training, respectively September in 1994 and truly in 1995. Rectal temperature, skin temperatures, thermal sensation and comfort were measured every 10 min., and Os uptake was measured at 10, 45, 85 min. after entering the chamber for 5 min. Body weight was measured before and after the experiment and amount of local sweat was measured during the 90 min long experiment. The results are as follows: Rectal temperatures in 35'c environment of C group were increased after training when compared with before clothing, while those of W group were not changed. But the changes of rectal temperature and heat production during 90 min in hot environment were almost the same in two groups after training. And mean skin temperatures, the changes of mean skin temperatures during 90 min in hot environment, total sweat amount and local sweat amount after training were also the same in two groups. From these results, it might be supposed that the heat loss of two groups were the same but the heat production, especially heat production during rest in C group was higher than in Wgroup. This fact suggests that the increase of rest heat production from cold acclimatization in winter is maintained to summer of the following year. And mild cold acclimatization coming from westing cool clothing does not have a negative effect on heat tolerance.

  • PDF

이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계 (Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis)

  • 최동수;김용훈;김진세;박천완;정현모;김기석;박종민
    • 한국포장학회지
    • /
    • 제28권3호
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

반팔 내의-전투복-화생방보호의 시스템에서 환기가 열적 스트레스에 미치는 영향 (Effect of Ventilation on Heat Stress in the System of Short-Sleeve T-Shirt-Combat Uniform-Chemical, Biological, and Radioactive Protective Clothing)

  • 이옥경;엄란이;정희수;조경민;이예진
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.836-847
    • /
    • 2022
  • This study establishes basic data for the development of a new Chemical, Biological, and Radioactive (CBR) protective clothing by selecting the ventilation position to optimize thermal comfort on the basis of the opening and closing of each part. Participants were eight men in their 20s who had previously worn CBR protective clothing. After vigorous exercise and perspiration, the microclimate of the clothing and skin temperature was measured. Results revealed that when the ventilation zipper was opened after exercising, the skin and clothing microclimate temperatures, which had increased during the exercise, decreased in the chest and shoulder blade regions. The clothing microclimate humidity decreased in the chest area. The change was greatest in the chest region; the skin temperature decreased by 0.2℃, the clothing microclimate temperature by 2.7℃, and the clothing microclimate humidity by 3.2%RH through ventilation. Thus, the opening that allows the exchange of accumulated heat and moisture while wearing the CBR protective clothing is efficient.

점진적 컴프레션 및 유연면상발열을 통한 혈액순환 개선 여성 레깅스 프로토타입 개발 및 평가 (Development and evaluation of women's leggings prototype for improvement of blood circulation through flexible heating surface and gradual compression)

  • 황진희;이윤아;지승현;김선희
    • 한국의상디자인학회지
    • /
    • 제25권3호
    • /
    • pp.53-67
    • /
    • 2023
  • Blood circulation is one of the most important life support functions of our body. It is essential to maintain healthy blood circulation as problems with blood circulation can lead to numerous diseases and serious complications. This study developed women's leggings with gradual compression and soft surface heating functions to improve blood circulation, and evaluated their performance and wearability. A silicon print pattern was developed to provide gradual compression, and a flexible heating surface coated with MWCNT (multi-walled carbon nanotube) conductive ink was fabricated for comfort and thermal effect. For the design, incision lines and materials were applied in consideration of aesthetic aspects, and design lines and colors were altered using a 3D program. The developed leggings showed that blood circulation can be improved when gradual compression and heating functions are simultaneously applied. Results were confirmed through measurements of clothing pressure, blood flow, and surface temperature. In the subjective wearability evaluation, it was confirmed that wearers felt gradual pressure, and they showed high satisfaction with wearability and design.

자동차 캐빈 공기질 제어를 위한 적정 입자청정횟수 평가 (Evaluation of proper particle cleaned air delivery per hour (PCH) for controlling indoor air quality in passenger car cabin)

  • 노광철;김태욱;김상우;황청하;한방우
    • 한국입자에어로졸학회지
    • /
    • 제20권2호
    • /
    • pp.47-56
    • /
    • 2024
  • In this study, an empirical study was conducted to investigate the clean air delivery rate (CADR) and the proper particle cleaned air delivery per hour (PCH) of the air cleaning device installed in passenger car cabin. Changes in internal particle concentration were measured in the cabins of the pick-up type engine-driven car and the electric vehicle depending on cabin air filters, ventilation modes, and blower settings. In the tested cars, PM2.5 collection efficiency of the HEPA filter was higher than that of the genuine filter. The PM2.5 collection efficiency of each cabin air filter was measured to be similar regardless of the blower setting of the tested cars. This means that the higher the blower setting, the higher the CADR and the PCH. The infiltration rate varies depending on the air tightness of the car. The cabin was more contaminated with particles under driving. From the CADRs measured inside the passenger car cabin, the recirculation mode of HVAC system is a more effective for managing ultrafine particles than the fresh air mode. From a few assumptions, the proper PCH was derived about 0.8 times/min (48 times/h). From this result and several experiments, the proper operation setting of air cleaning device installed inside cars can be found out to control indoor air quality. Also, an appropriate operation settings of HVAC system can be found with considering cooling and heating conditions for thermal comfort in passenger car cabin.

공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 - (Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature -)

  • 백지원;박찬;박소민;최재연;송원경;강다인;김수련
    • 환경영향평가
    • /
    • 제30권2호
    • /
    • pp.105-116
    • /
    • 2021
  • 건물이 밀집되고 인구밀도가 높은 도시는 열섬현상이 가중되고 열쾌적성에 취약하다. 도심에서 방치되고 있는 공지는 주거환경과 도시미관을 저해하고 지역 전체의 경제적 활력이 낮아지며 도시를 쇠퇴하는 하나의 요인으로 다루어진다. 이에 본 연구에서는 서울 종로구 송현동의 공지를 대상으로 개발 시나리오에 따라 주변 미기후 영향을 비교하고자 하였다. 현 상태 유지, 녹지 중심, 건물 중심, 녹지-건물 절충 시나리오를 설정하고, ENVI-met을 사용하여 개별 시나리오별로 대상지와 대상지 주변 1 km 내 변화되는 풍속, 기온, 평균복사온도를 개발 시나리오별 내·외부 영향을 비교분석하였다. 연구 결과, 대상지 내·외부는 녹지 중심의 시나리오가 현 상태 유지 시나리오와 비교했을 때 계절별 평균 기온은 낮아졌고, 풍속이 빨라진 것으로 도출되었다. 여름철 최대 -0.73 ℃가 낮아지거나 1.5 ℃까지 상승될 것으로 예상되었고, 풍속은 시나리오에 따라 최대 210 m 범위까지 영향이 있었다. 또한, 녹지는 내·외부, 건물 배치 및 크기는 녹지보다 효과는 적으나 인접한 외부 공간에 영향을 주는 것을 확인하였다. 본 연구는 송현동 개발 방향에 대한 의사결정 지원 도구로써 도움을 줄 수 있고, 향후 환경영향평가 제도에 미기후에 대한 부분을 반영하는데 활용할 수 있을 것으로 예상된다.

비만아동의 온도적응성에 대한 착의훈련 효과 (Effect of Wear Training on Temperature Adaptability of the Obese Children)

  • 정운선
    • 한국의류학회지
    • /
    • 제30권3호
    • /
    • pp.407-411
    • /
    • 2006
  • 본 연구에서는 비만아동의 온도적응능력을 향상시키기 위해 초등학교 4학년$\∼$6학년에 재학 중인 비만아동 13명(남자 6명, 여자 7명)을 대상으로 하여, 10주간의 단기 의복착용훈련 프로그램을 시행한 후 프로그램의 효과를 알아보았다. 프로그램 시행기간 중 아동이 매일 직접 측정한 주택 내 실내온도는 평균 25.1$^{circ}C$였고, 아동이 착용한 체표면적당 의복의 무게(착의량)는 평균 300g/$m^{2}$였으며, 실내온도와 착의량 간에는 유의한 상관이 있었다(p < .01). 프로그램의 시행효과를 구체적으로 알아보기 위해, 23.0$\pm$0.5$^{circ}C$, 50$\pm$5$\%$RH로 조절된 인공기후실에서 실험을 실시하여, 반소매 면 티셔츠(0.13clo)와 T/C 반바지(0.09c1o)를 착용하고 안정상태에 있는 아동의 체온, 피부온, 혈압 및 맥박 등의 생리반응과 쾌적감 및 온랭감의 주관적 감각반응을 프로그램 시행 전후에 측정한 후 얻은 주요 결과는 다음과 같다. 평균피부온은 프로그램 시행전후에 유의한 차이가 없었으나, 전반적으로 체온과 평균혈압은 프로그램 시행 후에 내려갔다(p < .01). 주관적 감각반응에서는 프로그램 시행 후에 여아가 남아에 비해 약간 더 따뜻하게 느꼈고(p < .05), 이에 따라 아동자신이 선택한 쾌적온도는 더 낮은 경향을 나타내었다(p < .1). 이와 같은 연구결과는 비만아동의 행동성 및 자율성 체온조절연구에 유익할 것이나, 보다 명확한 자료를 얻기 위해서는 종합적이고 장기적인 훈련프로그램의 시행이 요구된다.

도시림의 여름철 평균복사온도 저감 추정 연구 (A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation)

  • 안승만;손학기;이규석;이채연
    • 한국조경학회지
    • /
    • 제44권1호
    • /
    • pp.93-106
    • /
    • 2016
  • 이 연구는 제안한 평균복사온도의 차감비교기법을 통해 도시림이 여름철 옥외 환경에 미치는 온열완화를 정량적으로 추정하고 평가는 것을 목적으로 한다. 항공 라이다 측량시스템 기반 3차원 점군자료로부터 도시림이 있는 모의 대상지와 도시림이 없는 모의 대상지 두 사례를 구축하여 SOLWEIG 기반에서 평균복사온도를 산출하고 두 값들을 비교 및 분석하였다. 연구를 통해 도시림 캐노피가 연구지역 전체 일평균 $T_{mrt}$를 약 $5^{\circ}C$ 정도 저감하며 태양의 위치와 지면 조건에 따라 시간평균 $T_{mrt}$$33^{\circ}C$까지 저감될 수 있음을 확인하였다. 결과들은 도시미기후 지표(풍속, 습도, 대기 온도 등) 및 생명기상(인지온도 등) 연구들을 향상시키고 더불어 삼림 기반 공공 녹색정책 개발에 활용될 수 있을 것이다.