• Title/Summary/Keyword: Thermal Characteristic

Search Result 1,278, Processing Time 0.038 seconds

Synthesis and Curing Behavior of Crystalline Biphenyl Epoxy Resin (결정성 바이페닐 에폭시 합성 및 경화 거동 연구)

  • Choi, Bong-Goo;Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • The basic catalyst 1-benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) was synthesized and analyzed by FT-IR and 1H-NMR. A crystalized biphenyl-based epoxy was synthesized by using tetramethyl biphenol (TMBP) and epichlorohdrine. In order to consider the curing tendency of the synthesized BMH, the mass ratio was changed to 0.5, 1.0, 2.0 wt.% under heated conditions and the curing tendency was analyzed by differential scanning calorimeter (DSC). As a result, the BMH catalyst showed a fast curing result in the stepwise heating pr℃ess of the biphenol-A epoxy and the cationic polymer. From these results, the BMH catalyst showed excellent thermal stability as a potential heat curing catalyst. In addition, we considered the application possibility of epoxy molding compound (EMC) which required a skeleton structure and a high heat resistance because the synthesized biphenyl epoxy had a characteristic of rapidly lowering viscosity at a constant temperature and a rigid skeleton structure of biphenol. As a result, it was confirmed that the TMBP-based epoxy developed in this study was composed of a crystalline structure, and a curing reaction was observed with a Novolac resin at a high temperature. In the presence of a catalyst, a curing reaction was observed around 150 ℃ and thus TMBP-based epoxy was successfully applied as a raw material of EMC.

Mineralization and Characterization of Boseung Kaolin in Gaya Area (가야 지역 보성 고령토의 광화작용 및 광물 특성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.397-413
    • /
    • 2008
  • In Gaya area, the Boseong kaolin deposits exhibit locally unusual occurrences such as downward enrichment of kaoin minerals, characteristic hydrothermal alterations (illite and stilbite), and phase relations among kaolin minerals in addition to the extensive weathering of anorthositic country rocks. This indicates that the kaolin deposits seem to be genetically formed as a mixed hydrothermal and residual model. The kaolin ores can be divided into five types on the basis of differences in occurrence, mineral composition and characters. These consist of two types of high-grade ores ranging above 80% in grade and low-grade ores as low as less than 80% including feldspar residuals or the peculiar impurity phase of illite-vermiculite-stilbite. Halloysite and kaolinite are mostly coexisted in the Boseong kaolin, and these kaolin minerals exhibit diverse appearances in crystallinity and morphology. Such a diversity in mineral phase and crystallinity seems to be originated from the complexity in genesis. In addition to these diverse characters of the kaolin, its applied-mineralogical characteristics such as chemical composition, thermal properties, whiteness, viscosity, and etc. made it disadvantageous in terms of ore quality.

Scientific Investigation for Conservation Methodology of Bracket Mural Paintings of Daeungjeon Hall in Jikjisa Temple (직지사 대웅전 포벽화 보존방안을 위한 과학적 조사)

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2018
  • This report does studied for making the method of conserving bracket murals in Daeungjeon of Jikjisa Temple, through the scientific way. Results of evaluated the conservation status at the braket mural paintings, most serious damage is structural damage like cracks, breakage, and delamination. After optical investigation, a characteristic point wasn't found such as underdrawing or traces of a coat of paint. The ultrasonic examination speed by each wall painting was measured from about 195.8 m/s to 392.7 m/s, according to the location of the surface, and it was able to compare the surface properties according to the location. In Infrared-thermal image measurement shows that wall layer separation and paint layer delamination are closely detected, therefore it was able to judge of damage on the objective way. Material analysis revealed that the walls were made by sand and weathering soil. The wall layer combined sand with less than fine sand size by nearly 5:5, and the finishing layer was found to have mixed medium sand and fine sand at approximately 6:4 rates. However, In case of finishing layer, mixing ratios of sizes less than very fine sand were found to be significantly lower than wall. Therefore, it is estimated that the plysical damage such as the separation between the layers of the walls created in the braket mural paintings, is continuously caused by changes in the internal stresses and volume ratio caused by the density differences between the wall and the finishing layers.

The study for fabrication and characteristic of Li$_2$O-2SiO$_2$conduction glass system using conventional and microwave energies (마이크로파와 재래식 열원을 이용한 고체 전지용 Li$_2$O-2SiO$_2$계 전도성 유리의 제조 및 특성에 관한 연구)

  • Park, Seong-Soo;Kim, Kyoung-Tae;Kim, Byoung-Chan;Park, Jin;Park, Hee-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • The behavior of nucleation and crystallization in the $Li_2O_3-SiO_2$ glass heat-treated at different condition under the conventional and microwave processing was studied by differential thermal analysis (DTA), X-ray diffractometry (XRD), optical microscopy (OM), and electrical conductivity measurement. Nucleation temperature and temperature of maximum nucleation rate in both conventionally and microwave heat-treated samples were 460~$500^{\circ}C$ and $580^{\circ}C$, respectively. It was expected that the probability for bulk crystallization increased in microwave heat-treated sample, compared to conventionally heat-treated one. Degree of crystallization increased with increasing crystallization temperature in both conventionally and microwave heat-treated samples. However, pattern of crystallization growth under microwave processing appeared to be quite different from that under the conventional one due to its internal or volumetric heating. Electrical conductivity of conventionally and microwave heat-treated samples were 1.337~2.299, 0.281~~$0.911{\times}10^{-7}\Omega {\textrm}{cm}^{-1}$, respectively.

  • PDF

The Characteristic Study on Bottom Ash Flotation of Vegetable Oil as a Collector (식물성 기름 포수제의 바텀애쉬 부유선별 특성 연구)

  • Kim, Min Sik;Cha, Jong Mun;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2018
  • This study aims to investigate the characteristics on bottom ash flotation using vegetable oils as a collector. The experiment of changing the kerosene dosage as a collector for the flotation of coal ashes, the recovery of unburned carbon and unburned carbon content were 80% and 63%, respectively, when the dosage of kerosene was 9 kg/ton. The experiment of using soybean oil as a collector to improve flotation efficiency, the recovery of unburned carbon and unburned carbon content increased to 95% and 68%, respectively, when the dosage of soybean oil was 9 kg/ton. The recovery of unburned carbon and unburned carbon content were 99% and 78%, respectively, when safflower oil containing more poly unsaturated fats with double bonds than soybean oil was 9 kg/ton. The calorific value of the unburned carbon was 5,803 cal/g, confirming that it was possible to be used as a fuel for thermal power plants. Lastly, using vegetable oil as a collector it showed higher recovery of unburned carbon and higher unburned carbon than kerosene, which was mineral oil. Moreover, oil containing a large amount of poly unsaturated fat with two or more double bonds was found to have higher unburned carbon than other vegetable oils; thus showing excellent adsorbability for unburned carbon.

Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow (Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성)

  • Kim, Dong-Won;Kim, Heung-Gu;Um, Ki-Youn;Kim, Sang-Ho;Lee, In-Seon;Park, Jong-Su;Ryi, Shin-Kun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.160-165
    • /
    • 2006
  • A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of $2{\mu}m$ in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of $4{\mu}m$ and $0.5{\mu}m$, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at $700^{\circ}C$ was performed for an hour in $H_2$ ambient. And, as a result PdCu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in $H_2/N_2$ mixtures.

Preliminary study on absorption characteristic of a human body according to the amount of clothing worn for developing standard test dummy (표준더미 개발을 위한 착의량에 따른 인체의 흡음특성 기초연구)

  • Kim, Yong-Hee;Lee, Sung-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.254-260
    • /
    • 2017
  • The purpose of this study is to evaluate the sound absorption characteristics of a human body according to the amount of clothing worn by using reverberation method measurement method for developing standard test dummy, which can be used for testing absorption of occupied audience chair. Test method was based on the previous study (Conti et al., 2004), each experiment is conducted in the reverberation room and a subject wearing clothes is standing in that chamber. In this experiment, the sound absorption area of each frequency band according to the wearing of various material clothing was measured. As a result of measurements, the average sound absorption area of the whole frequency band was $0.25m^2-0.48m^2$ in case of a subject not wearing outer clothes, and $0.38m^2-0.98m^2$ in case of wearing of outerwear. Polyester tops by showing the maximum value, the highest characteristics in the 800 Hz to 1 kHz band among the rest of fiber materials. The outer jacket made of the wool and cotton materials show a higher absorption area as the frequency increases to the higher frequency band. The change of the sound absorption area according to the clothing amount was divided by the thermal resistance (clo) of the worn clothes and the weight per body surface area.

Three Dimensional Implementation of Intelligent Transportation System Radio Frequency Module Packages with Pad Area Array (PAA(Pad Area Array)을 이용한 ITS RF 모듈의 3차원적 패키지 구현)

  • Jee, Yong;Park, Sung-Joo;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.13-22
    • /
    • 2001
  • This paper presents three dimensional structure of RF packages and the improvement effect of its electrical characteristics when implementing RF transceivers. We divided RF modules into several subunits following each subunit function based on the partitioning algorithm which suggests a method of three dimension stacking interconnection, PAA(pad area array) interconnection and stacking of three dimensional RF package structures. 224MHz ITS(Intelligent Transportation System) RF module subdivided into subunits of functional blocks of a receiver(RX), a transmitter(TX), a phase locked loop(PLL) and power(PWR) unit, simultaneously meeting the requirements of impedance characteristic and system stability. Each sub­functional unit has its own frequency region of 224MHz, 21.4MHz, and 450KHz~DC. The signal gain of receiver and transmitter unit showed 18.9㏈, 23.9㏈. PLL and PWR modules also provided stable phase locking, constant voltages which agree with design specifications and maximize their characteristics. The RF module of three dimension stacking structure showed $48cm^3$, 76.9% reduction in volume and 4.8cm, 28.4% in net length, 41.8$^{\circ}C$, 37% in maximum operating temperature, respectively. We have found that three dimensional PAA package structure is able to produce high speed, high density, low power characteristics and to improve its functional characteristics by subdividing RF modules according to the subunit function and the operating frequency, and the features of physical volume, electrical characteristics, and thermal conditions compared to two dimensional RF circuit modules.

  • PDF

Characterization and assessment of the dolomite powder for application as fillers in the marble-type ore (대리암형 백운석의 분체 특성과 충전재로서의 응용성 평가)

  • Noh, Jin-Hwan;Lee, Na-Kyoung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.71-81
    • /
    • 2007
  • The marble-type dolomite from the Jasung Mine, which was farmed by duplicated affects of contact metamorphism and subsequent hydrothermal alteration, corresponds to a high-purity dolomite ranging up to above 98wt.% in dolomite contents. The dolomite contain minor impurities such as quartz, muscovite, and pyrite. It is characteristic that the dolomite is fairy Fe-rich corresponding to 0.4 wt.% due to the presence of pyrite of possible hydrothermal origin. The dolomite is nearly white-colored and constituting with subhedral crystals ranging $0.35{\sim}0.46mm$M in size, forming equigranular texture. Compared to the typical high-Ca limestone from the Pungchon Formation, the powder characteristics of dolomite is rather superior in milling efficiency, yields of fine particles, and size distribution. In addition, except for iron contents, the dolomite powder is no less superior than the limestone in quality and characteristics as fillers with respects to not only whiteness, oil absorption, and specific surface area but also shape characters such as elongation ratio, aspect ratio, and sphericity. This good characteristics of dolomite powder seem to be originated basically from comparatively higher grade and crystallinity of dolomite. Higher iron contents and the presence of sulfides prevents the dolomite from application for uses by thermal treatment, except for metallic manufacture. However, if proper ore separation procedure is available, the dolomite can be sufficiently utilized as substitutes for high-Ca limestone in most fields of filler industries.

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.