• 제목/요약/키워드: Thermal Boundary Layer

검색결과 259건 처리시간 0.025초

$(Sr{\cdot}Ca)TiO_3$계 세라믹의 유전 및 V-I 특성에 관한 연구 (Study on the Dielectric and Voltage-Current Properties of $(Sr{\cdot}Ca)TiO_3$-based Ceramics)

  • 강재훈;최운식;김태완;송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.72-75
    • /
    • 2001
  • In this paper, the $Sr_{1-x}Ca_{x}TiO_{3}(0{\leq}x{\leq}0.2)$ 2)-based grain boundary layer ceramics were fabricated to measured dielectric properties and voltage-current properties. The sintering temperature and time were $1420\sim1520^{\circ}C$, 4hours, in $N_{2}$ gas, respectively. The structural and the dielectric properties were investigated by SEM, X-ray, HP4194A and K6517. The 2nd phase formed by thermal diffusion from the surface lead to a very high apparent dielectric constant, $\varepsilon_r$ > 50000. X-ray diffraction patterns exhibited cubic structure for all specimens. Increasing content of Ca, the peak intensity were decreased.ﱇﶖ⨀ਆᘍ܀㘱㔮㠹㬅K䍄乍

  • PDF

낮은 프란틀수를 가지는 유체의 원관 입구 층류유동 및 열전달 (Lmainar flow and heat transfer of the fluid with low prandtl number in the entrance region of a circular pipe)

  • 백승욱;유정열
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.284-292
    • /
    • 1981
  • The flow of fluid with low prandtl number in the entrance region of a circular pipe has been considered, where the wall temperature is maintained to be constant. A finite difference method is used for the integral form of the governing equations in order that they satisfy the conservative properties of the numerical solutions. It is confirmed that the hydrodynamic entrance length and be divided into growing boundary layer region and fully viscous region, which is compared with existing results obtained by using boundary layer approximations. By assuning the developing velocity profile in the entrance region, the thermal entrance length is estimated and the local Nusselt number is obtained at various locations along the axial dirction.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

The strongest control of thermophoresis coefficient on nanoparticle profile at intermediate gaps: A spinning sphere

  • Sharif, Humaira;Naeem, Muhammad Nawaz;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.201-207
    • /
    • 2022
  • The evaluation of velocity profile for large values of buoyancy parameter and Bioconvected Rayleigh number is examined. The non-linear problem has been tackled numerically by shooting technique. Nanofluid temperature and nanoparticle concentration slightly elevates for increasing values of thermophoresis coefficient. Thickness of thermal boundary layer is significantly increased with thermophoresis coefficient whereas thickness of concentration boundary layer is more slightly enhanced. The response of temperature and nanoparticles concentration is observed due to change in Brownian motion parameter. As Brownian motion parameter increased temperature distribution is slightly enhanced. The reverse behavior is observed in case of nanoparticles concentration. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained.

항성 제트의 원통형 혼합층 모델 (CYLINDRICAL MIXING LAYER MODEL IN STELLAR JET)

  • 최승언;유경희
    • 천문학논총
    • /
    • 제9권1호
    • /
    • pp.21-38
    • /
    • 1994
  • We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observations.

  • PDF

On Compositional Convection in Near-Eutectic Solidification System Cooled from a Bottom Boundary

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.868-873
    • /
    • 2017
  • Natural convection is driven by the compositional buoyancy in solidification of a binary melt. The stabilities of convection in a growing mushy layer were analyzed here in the time-dependent solidification system of a near-eutectic melt cooled impulsively from below. The linear stability equations were transformed to self-similar forms by using the depth of the mushy layer as a length scale. In the liquid layer the stability equations are based on the propagation theory and the thermal buoyancy is neglected. The critical Rayleigh number for the mushy layer increases with decreasing the Stefan number and the Prandtl number. The critical conditions for solidification of aqueous ammonium chloride solution are discussed and compared with the results of the previous model for the liquid layer.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

의복과 인체의 공기층에 관한 자연대류 특성 (Natural Convection for Air-Layer between Clothing and Body Skin)

  • 지명국;배강열;정한식;정효민;추미선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성 (Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability)

  • 지명국;배강렬;정효민;정한식;추미선
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF