• Title/Summary/Keyword: Thermal Battery

Search Result 357, Processing Time 0.025 seconds

Optimal Design of Guide Vane for Improvement of Heat Removal Performance of Electric Vehicles Battery Using Genetic Algorithm (유전 알고리즘을 활용한 전기 자동차 배터리 방열성능 향상을 위한 가이드 베인 최적설계)

  • Song, Ji-Hun;Kim, Youn-Jea
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • Along with global environmental issues, the size of the electric vehicle market has recently skyrocketed. Various efforts have been made to extend mileage, one of the biggest problems of the electric vehicles, and development of batteries with high energy densities has led to exponential growth in mileage and performance. However, proper thermal management is essential because these high-performance batteries are affected by continuous heat generation and can cause fires due to thermal runaway phenomena. Therefore, thermal management of the battery is studied through the optimal design of the guide vanes, while utilizing the existing battery casing to ensure the safety of the electric vehicles. A battery from T-company, one of a manufacturer of the electric vehicles, was used for the research, and the commercial CFD software, ANSYS CFX V20.2, was used for analysis. The guide vanes were derived through optimal design based on a genetic algorithm with flow analysis. The optimized guide vanes show improved heat removal performance.

Development of Thin Film Electrode by Thermal CVD and Its Anode Characteristics for Lithium Battery (Thermal CVD법을 이용한 박막전극의 개발 및 리튬이차전지의 음극특성)

  • Lee, Young-Ho;Kim, Seong-Il;Doh, Chil-Hoon;Jin, Bong-Soo;Min, Bok-Ki;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.378-379
    • /
    • 2006
  • The carbon thin film was developed by the CVD method using the carbon source of toluene with the stream of argon gas at $800{\sim}1100^{\circ}C$ for 1 hour. Developed carbon thin films have the material loading of 0.27 mg($800^{\circ}C$), 0.80 mg($900^{\circ}C$), 2.3 mg($1000^{\circ}C$), and 2.9 mg($1100^{\circ}C$) for the disk of 15 mm diameter on single side. The characteristics of carbon thin film as the anode of thin film battery were evaluated using Li|C coin cell. Li|C($1100^{\circ}C$) coin cell has the first specific discharge and charge capacity of 953 mAh/g and 374 mAh/g, respectively, resulting the first Ah efficiency of 39.3 %. Capacity retention of the 5th cycle was 93.2 % indicating good cycleability. The carbon thin film prepared by CVD shows good specific capacity and cycleability, but low Ah efficiency.

  • PDF

A Study on Inspection Technology of Thermal Battery Electrolyte using Image Processing Method (영상처리 방법을 통한 열전지 전해질 검사기법 연구)

  • Ha, Sang-Hyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.820-826
    • /
    • 2012
  • For the development of reliable thermal batteries, electrolyte is quite important because it is closely related to the performance and stability of thermal batteries. This paper describes general image processing method used for the inspection of molten-salt based electrolyte disk and also describes how we can apply this image processing method to the inspection of thermal battery electrolyte. Moreover we have found optimized image processing conditions to improve the discriminating ability of compaction defects such as non-uniform parts in an electrolyte.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries (리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구)

  • Gang, Myung-Bo;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

A Study on High Thermal Stable Separator Coating Machine for High-Capacity Lithium Ion Secondary Battery (고용량 리튬이온이차전지용 고내열성 분리막 코팅장비 연구)

  • Noh, Jin-Hee;Son, Hwa-Jin;Lee, Ho-Chul;Park, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.45-51
    • /
    • 2019
  • As the separator becomes thinner, the role of thermal stability becomes more important in ensuring the high capacity of medium- and large-sized lithium-ion secondary batteries. In this study, we researched coating technology to improve the separator's thermal stability. We minimized the coating time by optimizing the design of a vertical two-stage coater that was thin, uniform, and capable of coating on both sides at the same time with a maximum 2㎛ thickness coating layer of fluorinated polymer (PVdF-HFP) on the bare polyethylene (PE) separator, which increased the thermal stability. In addition, during the coating process, a dual-jacket-roll method of drying was developed that increased the drying effectiveness without thermal damage to the separator. We also investigated the thermal stability of the separator manufactured from a coating machine, and studied the battery-applied performance by making a lithium-ion pouch battery.

Thermal Management of a Ni/MH Battery Module for Electric Vehicle (전기자동차용 Ni/MH 전지 Module의 열관리기술)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1034-1040
    • /
    • 1997
  • Temperature distribution of battery module consists of 11 batteries of 90Ah rate is analyzed using commercial software NISA II. Equivalent thermal resistance network is used to reduce the number of element in calculating heat transfer through a medium composed of several different thermal conductivity layers. Orthotropic model is used to put different thermal conductivity values according to Cartesian coordinate. Aluminum cooling fins are inserted in the middle of batteries to reduce battery module temperature. The cooling fin at the end of the module does not necessary in reducing maximum temperature. Combined effect of front and side cooling fin is analyzed to reduce the temperature difference among batteries. The maximum temperature difference among batteries is reduced within $3^{\circ}C$ when 4 aluminum cooling tin of 1mm thickness is inserted in battery module.

  • PDF

Impedance Estimation for Lithium Secondary Battery According to 1D Thermal Modeling (리튬 2차 전지의 1차원 열적 특성을 고려한 임피던스예측)

  • Lee, Jung-Su;Lim, Geun-Wook;Kim, Kwang-Sun;Cho, Hyun-Chan;Yoo, Sang-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a thermal model that estimate the impedance of battery by experiment & simulation. In this one-dimensional model, Seven governing equations are made to solve seven variables c, $c_s,\;\Phi_1,\;\Phi_2,\;i_2$, j and T. The thermal model parameters used in this model have been adjusted according to the experimental data measured in the laboratory. The result(Voc, Impedance) of this research can be used in BMS(Battery Management System), so an efficient method of using battery is developed.

  • PDF