• 제목/요약/키워드: Thermal Anisotropic Factor

검색결과 8건 처리시간 0.019초

층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석 (Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow)

  • 최형집;오준성;이강용
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구 (A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses)

  • 문현구;주광수
    • 터널과지하공간
    • /
    • 제1권2호
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

전기전도성 이방성 복합재료 방전가공의 수치 해석 (Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite)

  • 안영철;천갑제
    • Korean Chemical Engineering Research
    • /
    • 제47권1호
    • /
    • pp.72-78
    • /
    • 2009
  • 전기전도성 이방성 복합재료의 방전가공에 대하여 비정상상태 수식모델을 세우고 갤러킨의 유한요소법으로 해를 구하였다. 피삭재의 온도 분포와 분화구의 모양 및 공작물 제거 속도를 공정 매개변수에 관하여 구득하였다. 계산의 정확도와 효율을 위하여 앞선 연구에서 최적치로 선정된 $12{\times}12$ 요소의 비규칙 체눈을 사용하였다. 알루미나/티타늄 카바이드 복합재료의 물성을 재료의 물성으로 선정하였고 51.4 V의 전압과 7 A의 전류를 갖는 전력을 적용하였으며 제거 효율을 10%로 전열 이방성 계수를 2와 3으로 가정하였다. 불꽃이 일어나면서 피삭재는 즉시 녹기 시작하였고 열적 손상 영역이 형성되었다. 또한 시간이 흘러감에 따라서 분화구의 경계가 이동하는 것이 확인되었다. 반경 방향과 축 방향의 열전도도가 독립적으로 커지면 온도분포와 분화구의 모양이 각각 반경 방향과 축 방향으로 이동하였다. 공작물 제거 속도는 축 방향의 열전도도보다 반경 방향의 열전도도가 증가할 때 더욱 커지는 것으로 나타났다.

섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향 (Effects of fiber forms on thermal anisotropy in fibrous composites)

  • 심환보;이보성
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.215-222
    • /
    • 1995
  • C형 및 중공형 탄소섬유는 방직(spinning)시 홀의 전단응력을 원형의 그것에 비해서 더 광범위하게 걸쳐받게 됨으로 분자배향을 고도로 유도할 수가 있다. 핏치계 이방성 중공 및 C형 탄소섬유 강화재의 축 횡방향 열전도도를 에폭시 모재 하에서 실험하였다. 열이방성 정도에 있어 원형 탄소섬유 보강재인 경우 50 정도 였으나, C형과 중공형 보강재는 최고치로 대략 130과 118 정도를 보임으로써 원형 강화재 보다 200%이상 우수한 열이방성을 보였다.

  • PDF

전기전도성 이방성 복합재료 방전가공의 수치모사 (Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite)

  • 안영철;천갑재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.