• Title/Summary/Keyword: Thermal Anisotropic Factor

Search Result 8, Processing Time 0.023 seconds

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치 해석)

  • Ahn, Young-Cheol;Chun, Kap-Jae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. The $12{\times}12$ irregular mesh that was chosen as the optimum in the previous analysis was used for computational accuracy and efficiency. A material having the physical properties of alumina/titanium carbide composite was selected and an electricity with power of 51.4 V and current of 7 A was applied, assuming the removal efficiency of 10 % and the thermal anisotropic factors of 2 and 3. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately, the temperature distribution and the shape of the crater were shifted in the radial and axial directions, respectively. The material removal rate was found to be higher when the conductivity was increased in the radial direction rather than in the axial direction.

Effects of fiber forms on thermal anisotropy in fibrous composites (섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향)

  • Sim, Hwan-Bo;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 1995
  • Anisotropic pitch-based C-type and hollow carbon fibers can obtain wider shear stresses during the spinning and induce higher molecular orientation than that of round along the fiber axis. These fibers reinforced unidirectional epoxy composites were prepared by hot-press moulding method and perpendicular and parallel thermal conductivities of the composites were measured by a steady-state meth od. In the case of round carbon fibers reinforced epoxy composites(H-CF/EP), thermal anisotropic factor showed nearly 50, while those of H-CF/EP and C-CF/EP showed about 130 and 118, respectively. As a result, both H-CF/EP and C-CF/EP had an excellent directional thermal conductivity to distribute heat, above 200 %.

  • PDF

Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치모사)

  • 안영철;천갑재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.