• 제목/요약/키워드: Thermal Aging test

검색결과 207건 처리시간 0.027초

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

PV 모듈에서 온도 영향에 의한 micro-crack 성장과 전기적 특성 분석 (The analysis of growth and electrical characteristics of micro-crack with thermal effect in PV module)

  • 송영훈;강기환;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1318-1319
    • /
    • 2011
  • In this paper, we analyzed of growth and electrical characteristics of micro-cracks with thermal effect in PV module. The micro-cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because microcracks accelerated aging by thermal cycling test. according to IEC61215. Before every test, we checked output and EL image of PV module.

  • PDF

자연 노화된 니트로셀룰로오스의 수명에 관한 연구 (A Study of Life about Naturally Aged Nitrocellulose by Storage)

  • 김동성;진홍식
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.595-601
    • /
    • 2020
  • 10년 이상 보관된 니트로셀룰로오스 (Nitrocellulose, 니트로셀룰로오스) 재질의 화약용기 안전 검사를 진행하는 과정 중 화약이 보관되어진 용기에 균열이 발생한 것을 확인하여 고장 원인 분석 시험을 실시하였다. 고장이 발생한 데에 영향을 준 요인을 선별하기 위해 먼저 고장수목분석(Fault Tree Analysis, FTA)을 통해 고장 요인 및 원인에 대해 탐구하였으며, 보관 시 발생할 수 있는 내·외부적인 요인 및 환경에 대한 영향성을 확인한 결과 열에 의해 화학 반응이 가속화되어 발생한 화약용기의 물성 변화가 고장의 원인인 것으로 추정하였다. 이를 확인하기 위해 자연 노화된 화약용기를 이용하여 열충격시험, 양립성 시험 등의 환경시험을 수행하여 고장의 원인 분석을 수행하였으며, 가속노화시험을 통해 고장 재현 시험을 실시하였다. 이를 통해 앞선 고장수목분석 결과와 같이 열과 화약에 의해 화학 반응이 가속화되는 것을 확인할 수 있었으며, 화약용기의 물성이 변화하는 것을 확인하였다. 또한, 열 노화에 의한 수명 추정을 위해 아레니우스 모델(Arrhenius Model)을 이용하여 화약용기의 사용 수명을 추정하였다.

ACCELERATED AGING USING $FOCAS^{(R)}$-A BURNER BASED SYSTEM SIMULATING AN ENGINE

  • Bykowski, B.B.;Bartley, G.J.J.;Webb, C.C.;Zhan, R.;Burrahm, R.W.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.245-249
    • /
    • 2006
  • Accelerated aging of engine exhaust system components such as catalytic converters are traditionally performed using an engine/dynamometer test stand. $SwRI^{(R)}'s\;FOCAS^{(R)}$ system reduces or eliminates many of the engine based aging limitations. This paper will describe several studies. These include: 1) replication of engine based catalyst aging cycles with added precision and dependability; 2) catalyst aging with and without lubricating oil effects; 3) effects of lubricant phosphorus on catalyst performance; and 4) the potential to thermally age components beyond the capabilities of engine based systems. The first study includes the development of the SwRI FOCAS system to run programmed aging conditions with or without lubricating oil. A description of the subsystems is given. The second two studies used the SwRI FOCAS system to age catalysts. One study compared thermal-only aging using of the SwRI FOCAS system with equivalent aging on a traditional engine/dynamometer test stand. The other study examined the effect on catalyst performance of two lubricating oils containing different levels of phosphorus, and compared the results to field data generated using the same oils in a fleet of vehicles.

볼 압입시험을 이용한 2상 주조 스테인리스강의 열화 평가 (Aging Evaluation of Duplex Cast Stainless Steel Using Ball Indentation Test)

  • 김진원
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1253-1261
    • /
    • 2005
  • Cast stainless steel (CSS) is thermally aged by a long term exposure in the range of nuclear power plant operating temperature. The thermal aging is a cause of concern for the continued safe and reliable operation of CSS nuclear components. Therefore, an assessment of degradation in material properties of these components has been importantly considered. In this study the ball indentation tests were performed on four cast stainless steels aged at $400^{\circ}C$ for 3600 hours, to investigate the applicability of ball indentation test to the assessment of aging degradation of cast stainless steels. Thus, the reliability of ball indentation test for aged CSS was analyzed by evaluating the scattering of data tested from each material and by comparing tensile properties obtained from ball indentation test and standard tensile test. Also, the tensile properties of aged CSS obtained from ball indentation test were compared with those predicted by the evaluation procedure developed on the basis of material database for aged CSS.

Small Punch Test for the Evaluation of Thermal Aging Embrittlement of CF8 Duplex Stainless Steel

  • Cheon, Jin-Sik;Kim, In-Sup;Jang, Jae-Gyoo;Kim, Joon-Gu
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.79-84
    • /
    • 1996
  • Small punch test was performed on CF8 duplex stainless steel aged at 370 and 400$^{\circ}C$ up to 5,000 h to evaluate the degree of the thermal aging embrittlement. At room temperature, the SP load-displacement curve was in a similar shape to those of ferritic steels and had a good reproducibility in spite of two-phase structure. The aging heat treatment resulted in a slight increase of the yield strength. As test temperature was lowered, the SP load showed a sudden drop followed by serrations before the SP specimen was fractured, resulting from the cracking of ferrite phase. The extent of thermal embrittlement was assessed in terms of the SP energy. Aging treatment at higher temperature led to a larger shift in the transition temperature and the corresponding change in the fracture mode. The main cause of the degradation was the embrittlement of ferrite phase. Additionally the phase boundary separation profoundly contributed to the degradation of the specimen aged at 400$^{\circ}C$.

  • PDF

납고무받침의 노화가 교량의 내진성능에 미치는 영향 (Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges)

  • 박성규;오주
    • 대한토목학회논문집
    • /
    • 제32권2A호
    • /
    • pp.109-116
    • /
    • 2012
  • 지진격리장치로서 납고무받침의 동적 특성은 주재료인 고무재료의 동적거동과 비선형 성질에 의존하고 있다. 역학적이나 환경적인 영향으로 인해 고무재료에 노화가 진행되고 결국에는 손상이 불가피하게 발생하게 된다. 고무재료의 노화의 주원인은 높은 온도에서 반응열로 인한 산화반응으로 알려져다. 이에 따라 납고무받침의 가속 열 노화실험을 수행하여 열 노화 전 후에 대해 받침의 특성값을 상호 비교하였다. 실험 결과 열 노화 현상은 전단강성과 에너지 감쇠 그리고 등가감소계수에 영향이 있음을 알 수 있었다. 또한 열 노화에 의한 동적특성의 저하를 실제 교량에 적용하여 납고무받침의 열 노화가 교량의 교각의 내진성능에 미치는 영향을 수치해석을 통해 비교분석하였다. 해석결과 납고무받침에 대하여 열 노화에 따른 기본 특성변화가 교량의 내진성능에 미치는 영향은 크지 않음을 알 수 있었다.

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제53권4호
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가 (Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating)

  • 김대진;이동훈;구재민;송성진;석창성;김문영
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.