• 제목/요약/키워드: Therapeutic Element

검색결과 85건 처리시간 0.031초

Organ-Specific Expression Profile of Jpk: Seeking for a Possible Diagnostic Marker for the Diabetes Mellitus

  • Lee Eun Young;Park Hyoung Woo;Kim Myoung Hee
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.385-389
    • /
    • 2004
  • A novel gene Jpk, originally isolated as a trans-acting factor associating with the position-specific regulatory element of murine Hox gene has been reported to be expressed differentially in the liver of diabetic animals. Therefore, in an attempt to develop a possible diagnostic marker and/or new therapeutic agent for the Diabetes Mellitus, we analysed the expression pattern of Jpk among organs of normal and diabetic Sprague-Dawley (SD) rats. Total RNAs were isolated from each organs (brain, lung, heart, liver, spleen, kidney, muscle, blood, and testis) of diabetic and normal rats in both normal feeding and after fasting condition. And then RT (reverse transcription) PCR has been performed using Jpk­specific primers. The Jpk gene turned out to be expressed in all organs tested, with some different expression profiles among normal and diabetes, though. Upon fasting, Jpk expressions were reduced in all organs tested except kidney, muscle and brain of normal rat. Whereas in diabetes, Jpk expressions were increased in all organs except heart, muscle and testis when fasted. Compared to the normal rat, the Jpk expression level in blood was remarkably upregulated (about 15-30times) in diabetic rat whether in normal feeding or fasting conditon, suggesting that the Jpk could be a candidate gene for the possible blood diagnostic marker for the Diabetes Mellitus.

  • PDF

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Compound K Rich Fractions Regulate NF-κB-dependent Inflammatory Responses and Protect Mice from Endotoxin-induced Lethal Shock

  • Yang, Chul-Su;Yuk, Jae-Min;Ko, Sung-Ryong;Cho, Byung-Goo;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.315-323
    • /
    • 2008
  • In the previous studies, we isolated the compound K rich fractions (CKRF) and showed that CKRF inhibited Toll-like receptor (TLR) 4- or TLR9-induced inflammatory signaling. To extend our previous studies,1) we investigated the molecular mechanisms of CKRF in the TLR4-associated signaling via nuclear factor (NF)-${\kappa}B$, and in vivo role of CKRF for induction of tolerance in lipopolysaccharide (LPS)-induced septic shock. In murine bone marrow-dervied macrophages, CKRF significantly inhibited the induction of mRNA expression of proinflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase. In addition, CKRF significantly attenuated the transcriptional activities of TLR4/LPS-induced NF-${\kappa}B$. Nuclear translocation of NF-${\kappa}B$ in response to LPS stimulation was significantly abrogated by pre-treatment with CKRF. Furthermore, CKRF inhibited the recruitment of p65 to the interferon-sensitive response element flanking region in response to LPS. Finally, oral administration of CKRF significantly protected mice from Gram-negative bacterial LPS-induced lethal shock and inhibited systemic inflammatory cytokine levels. Together, these results demonstrate that CKRF modulates the TLR4-dependent NF-${\kappa}B$ activation, and suggest a therapeutic role for Gram-negative septic shock.

Anti-adipogenic and Pro-osteoblastogenic Activities of Spergularia marina Extract

  • Karadeniz, Fatih;Kim, Jung-Ae;Ahn, Byul-Nim;Kim, Mihyang;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제19권3호
    • /
    • pp.187-193
    • /
    • 2014
  • This is an Open Access article distributed under the terms of the Creative Commons Attribution For decades, Spergularia marina, a local food that is popular in South Korea, has been regarded as a nutritious source of amino acids, vitamins, and minerals. While several halophytes are reported to possess distinct bioactivities, S. marina has yet to be promoted as a natural source of bioactives. In this study, the effects of S. marina on the adipogenic differentiation of 3T3-L1 fibroblasts and the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts and C2C12 myoblast cells were evaluated. The anti-adipogenic effect of S. marina was assessed by measuring lipid accumulation and adipogenic differentiation marker expression. S. marina treatment significantly reduced lipid accumulation and notably decreased the gene levels of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element binding protein 1c. In addition, S. marina enhanced osteoblast differentiation, as indicated by increased alkaline phosphatase activity and increased levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin, and type I collagen. In conclusion, S. marina could be a source of functional food ingredients that improve osteoporosis and obesity. Further studies, including activity-based fractionation, will elucidate the mechanism of action and active ingredients of S. marina, which would provide researchers with a better understanding of the nutraceutical and therapeutic applications of S. marina.

치료용 기능성 게임에서의 심리 치료적 요소 (Psycho-therapeutic Elements in Serious Game for Therapy)

  • 윤선정;류미영
    • 한국게임학회 논문지
    • /
    • 제12권2호
    • /
    • pp.31-41
    • /
    • 2012
  • 치료용 기능성 게임은 직접적인 치료보다는 환자의 심리적인 변화를 일으키고, 적극적인 치료 의지를 가지게 하는 것이 주된 목적이다. 본 연구에서는 선행 자료들을 분석하여 심리 치료를 위한 치료용 기능성게임을 설계할 때 고려할 요소로 5가지를 추출하였다. 추출한 요소들의 검증을 위해 이미 치료 효과가 입증된 '리미션', 현실의 일상생활에서 어려움을 겪을 수 있는 환자가 가상공간에서 선(先) 경험을 통해 치료 효과를 얻을 수 있도록 설계된 '심즈2'를 집중적으로 분석하였다. 그 결과, 캐릭터와의 일치성, 게임 소재의 안정성, 현실적 사실성, 게임 진행의 자기결정성은 전반적으로 적용되어 있었지만, 현실과의 상호작용성은 적용되어 있지 않았다. 그러나 현실과의 상호작용성은 선행 연구와 추출 요소에 대한 설문 검증으로 적합한 요소로 나타났다. 본 연구결과는 치료용 기능성게임을 설계하고자 할 때 고려할 중요한 참고 자료가 될 것으로 기대한다.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • 한국식품저장유통학회지
    • /
    • 제24권4호
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

홍화씨와 흰민들레 복합물의 Scopolamine 유도 기억력 손상에 대한 보호 효과 (Protective Effects of Combination of Carthamus tinctorius L. Seed and Taraxacum coreanum on Scopolamine-induced Memory Impairment in Mice)

  • 김지현;;김민조;박찬흠;이재양;신유수;조은주
    • 한국약용작물학회지
    • /
    • 제28권2호
    • /
    • pp.85-94
    • /
    • 2020
  • Background: Alzheimer's disease (AD) is caused by various factors, such as cholinergic dysfunction, regulation of neurotrophic factor expression, and accumulation of amyloid-beta. We investigated whether or not a combination of Carthamus tinctorius L. seed and Taraxacum coreanum (CT) has a protective effect on scopolamine-induced memory impairment in a mouse model. Methods and Results: Mice were orally pretreated with CT (50, 100 and 200 mg/kg/day) for 14 days, and scopolamine (1 mg/kg/day) was injected intraperitoneally before subjecting them to behavior tests. CT-administered mice showed better novel object recognition and working memory ability than scopolamine-treated control mice. In T-maze and Morris water maze tests, CT (100 and 200 mg/kg/day) significantly increased space perceptive ability and occupancy to the target quadrant, respectively. In addition, 100 and 200 mg/kg/day of CT attenuated cholinergic dysfunction through inhibition of butyryl cholinesterase in brain tissue. Furthermore, CT-administered mice showed higher cyclic adenosine monophosphate-response element-binding protein (CREB) levels and lower amyloid precursor protein (APP) levels compared to scopolamine-treated control mice. Conclusions: CT improved scopolamine-induced memory impairment through inhibition of cholinergic dysfunction, up-regulation of CREB, and down-regulation of APP. Therefore, CT could be a useful therapeutic agent for AD with protective effects on cognitive impairment.

고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계 (Optimal design of a concave annular array transducer to generate high intensity focused ultrasound)

  • 최은아;노용래
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.452-465
    • /
    • 2016
  • 본 연구에서는 의료 치료용으로 고강도 집속 초음파를 발생시킬 수 있는 오목한 환상형 배열 트랜스듀서의 구조를 최적설계하였다. 트랜스듀서는 곡률반경으로 40 mm를 가지는 여러 개의 동심원 채널로 이루어진 위상배열 구조이다. 구조 설계를 위해 트랜스듀서의 음장을 해석할 수 있는 이론식을 유도하였으며, 이론식 계산 결과의 타당성을 유한요소해석 결과와 비교함으로써 검증하였다. 배열 트랜스듀서의 기하학적 초점 이외 지점에서의 동적 집속 가능 유무도 함께 확인하였다. 또한 음장 내 원하지 않는 지점에 발생하는 그레이팅 로브의 레벨은 트랜스듀서의 채널수와 주파수와의 관계를 이용하여 개선될 수 있음을 확인하였다. 따라서 정점으로부터 특정 범위 내에 주엽이 존재하면서 그레이팅 로브를 포함한 최대 부엽의 크기를 체계적으로 줄일 수 있도록 트랜스듀서 구조를 최적 설계하였다. 설계된 구조는 모든 집속 지점에서 목표를 만족하는 성능을 보였다.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice

  • Park, Miey;Yoo, Jeong-Hyun;Lee, You-Suk;Park, Eun-Jung;Lee, Hae-Jeung
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.350-361
    • /
    • 2020
  • Background: Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods: HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results: BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion: Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.