• Title/Summary/Keyword: Thematic classification

Search Result 85, Processing Time 0.022 seconds

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Unsupervised Classification of Forest Vegetation in the Mt. Wolak Experimental Forest Using Landsat Thematic Mapper Data (Landsat Thematic Mapper 화상자료를 이용한 월악산 지역 산림식생의 무감독분류)

  • Lee, Sang Hee;Park, Jae Hyeon;Lee, Joon Woo;Kim, Je Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.36-44
    • /
    • 2001
  • The main purpose of this study was to classify forest vegetation effectively using Landsat Thematic Mapper data(June, 1994) in mountainous region. The research area was the Mt. Wolak Experimental Forest of Chungbuk National University, near Chungju and Jecheon city, Chungcheongbuk-do. To classify forest vegetation effectively, Normalized Difference Vegetation Index(NDVI) was used to reduce topographic effects. This NDVI was modified and transformed to the value of 0 to 255, and then the modified values were combined with other Landsat Thematic Mapper bands. To classify forest and land cover types, unsupervised classification method was used. The results of this study are summarized as follows. 1. Combinations of band "3, 5, NDVI" in Landsat Thematic Mapper data showed a good separation with high accuracy. The expected classification accuracy was 95.1% in Landsat Thematic Mapper data. 2. The Land Cover types were classified into six groups : coniferous forest, deciduous forest, mixed forest, paddy and grass, non-forest, and other undetectable areas. As these classified results were compared with the reconnaissance survey and aerial black and white infrared photographs, the overall classification accuracy was 76.5% in Landsat Thematic Mapper data. 3. The portion of non-forest in Mt. Wolak area was 1.9%. The percentages of coniferous, deciduous and mixed forests were 30.9%, 35.7% and 26.4%, respectively. 4. As these classified results were compared with other reference data, the percentages of coniferous, deciduous and mixed forests increased, but the portion of non-forest was exceedingly diminished. These differences are thought to be from the different research method and the different season of received Landsat Thematic Mapper data.

  • PDF

Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery (고해상도 위성영상을 이용한 정밀 주제 정보 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2010
  • In recent years, there have been diverse researches and utilizations of creating geo-spatial information with high resolution satellite images. However thematic maps made with middle or low resolution satellite images have low location accuracy and precision of thematic information. This study set out to propose a method of making a precision thematic map with high resolution satellite images by examining the conversion from the conventional method based on middle or low resolution satellite images to the automatic method based on high resolution satellite images of GSD 1m or lower, extracting thematic information of middle or large scale of 1/5,000 or lower, and analyzing its accuracy. Seven classification classes were categorized according to the object-oriented classification in order to automatically extract thematic information with high resolution satellite images. And the classification results were compared and analyzed with the old middle scale land cover map and 1/1000 digital map.

A Study on Improving the Performance of Document Classification Using the Context of Terms (용어의 문맥활용을 통한 문헌 자동 분류의 성능 향상에 관한 연구)

  • Song, Sung-Jeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.205-224
    • /
    • 2012
  • One of the limitations of BOW method is that each term is recognized only by its form, failing to represent the term's meaning or thematic background. To overcome the limitation, different profiles for each term were defined by thematic categories depending on contextual characteristics. In this study, a specific term was used as a classification feature based on its meaning or thematic background through the process of comparing the context in those profiles with the occurrences in an actual document. The experiment was conducted in three phases; term weighting, ensemble classifier implementation, and feature selection. The classification performance was enhanced in all the phases with the ensemble classifier showing the highest performance score. Also, the outcome showed that the proposed method was effective in reducing the performance bias caused by the total number of learning documents.

Landuse classifications from Thematic Mapper Images Using a Maximum Likelihood Method (위성영상을 이용한 토지이용분류에 관한 연구)

  • 박희성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.366-369
    • /
    • 1998
  • To get the knowledge of land uses for watersheds, Thematic Mapper image from Landsat 5 satellite was used. The image was classified into land covers/uses by maximum likelihood classification technique. Land uses from the satellite image in this study was compared with those from the topographical map in previous. It was found that Land uses from the satellite image had a good reflection of real situations and more advantage in the reduction of time and cost.

  • PDF

A Study on the Land Cover Classification and Facilities Management of Pusan Port using Satellite data (위성영상을 이용한 부산항만 주변지역 토지피복분류 및 시설물관리 구축 방안)

  • 이기철;김정희;이병환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.59-65
    • /
    • 1998
  • A thematic land cover map of Pusan port area was developed using Landsat satellite TM(Thematic Mapper) image. Two types of digital data which are road and sea water layer are extracted from existing paper map were overlayed over the developed land cover map. SPIN-2(KNR-1000) image was utilized to make a facility map of JaSungDae port. SPIN-2 image, which has a cell resolution of 1.56 m showed higer accuracy than TM image, which has a cell resolution of 30 m for facility mapping. Overall, the techniques of digital mapping using satellite image are very useful, effective and efficient.

  • PDF

Comparative Analysis of Land-use thematic GIS layers and Multi-resolution Image Classification Results by using LANDSAT 7 ETM+ and KOMPSAT EOC image (Landsat 7 ETM+와 KOMPSAT EOC 영상 자료를 이용한 다중 분해능 영상 분류결과와 토지이용현황 주제도 대비 분석)

  • 이기원;유영철;송무영;사공호상
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.331-343
    • /
    • 2002
  • Recently, as various fields of applications using space-borne imagery have been emphasized, interests on integrated analysis or fusion using multi-sources are also increasing. In this study, to investigate applicability of multiple imageries for further regional-scaled application, DN value analysis and multi-resolution classification by using KOMPSAT EOC imagery and Landsat 7 ETM+image data in the Namyangju-city area were performed, and then this classified results were compared to land-use thematic data at the same area. In case of classified results by using muff-resolution image data, it is shown that linear-type features can be easily extracted. furthermore, it is expected that multi-resolution classified image can be effectively utilized to urban environment analysis, according to results of similar pattern by comparative study based on multi-buffered zone analysis or so-called distance analysis along main road features in the study area.

Optimizing Image Size of Convolutional Neural Networks for Producing Remote Sensing-based Thematic Map

  • Jo, Hyun-Woo;Kim, Ji-Won;Lim, Chul-Hee;Song, Chol-Ho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.661-670
    • /
    • 2018
  • This study aims to develop a methodology of convolutional neural networks (CNNs) to produce thematic maps from remote sensing data. Optimizing the image size for CNNs was studied, since the size of the image affects to accuracy, working as hyper-parameter. The selected study area is Mt. Ung, located in Dangjin-si, Chungcheongnam-do, South Korea, consisting of both coniferous forest and deciduous forest. Spatial structure analysis and the classification of forest type using CNNs was carried in the study area at a diverse range of scales. As a result of the spatial structure analysis, it was found that the local variance (LV) was high, in the range of 7.65 m to 18.87 m, meaning that the size of objects in the image is likely to be with in this range. As a result of the classification, the image measuring 15.81 m, belonging to the range with highest LV values, had the highest classification accuracy of 85.09%. Also, there was a positive correlation between LV and the accuracy in the range under 15.81 m, which was judged to be the optimal image size. Therefore, the trial and error selection of the optimum image size could be minimized by choosing the result of the spatial structure analysis as the starting point. This study estimated the optimal image size for CNNs using spatial structure analysis and found that this can be used to promote the application of deep-learning in remote sensing.

Utilization of Thematic Mappers Data for the Comparison of Methods to Create Watersheds

  • Chang, Eun-Mi;Park, Kyeong;Kim, Young-Soo;Lee, Bok-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.343-348
    • /
    • 1999
  • Delineation of watersheds is one of the most basic steps for water resource management and National Park management. The purpose of this study is to investigate how to utilize Thematic Mappers scenes to compare watersheds created by running a model with those produced by digitizing topographic maps of Keum River basin. A methodology is designed and tested using Geographic Information Systems (GIS) and remote sensing to map areas with various thematic maps. A CAD data on watersheds from the Decision Support system for Water Quality is converted into GIS format. The digital elevation model with 100-meter resolution is used to create watershed by cumulative watershed method. TM scenes are also classified by new procedures including stacking method, NDVI, NDWI, and unsupervised classification methods. To evaluate the relative correctness Kyerongsan National Park was studied intensively whose area was divided into 6 watersheds in both cases. The boundaries of watershed from the model are less correct than those of the topographic maps. This result shows that automated watershed creating system needs higher-resolution digital elevation model than 100-meters.

  • PDF

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.