• Title/Summary/Keyword: The transfer conductance

Search Result 64, Processing Time 0.027 seconds

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Enhancement of Heat Transfer from an Air-Cooled 3-Dimensional Module by means of Heat Spreading in the Board (기판의 열확산에 의한 3차원 공랭모듈로부터의 열전달촉진에 관한 연구)

  • Park, Sang-Hee;Hong, Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1022-1030
    • /
    • 2002
  • The experiments were performed with a $31{\times}31{\times}7mm^3$ simulated 3-dimensional module on the thermal conductive board of a parallel plate channel. The convective thermal conductance for the path from the module surface directly to airflow and conjugate thermal conductance for the path leading from the module to the floor by way of a module support, then, to the airflow were determined with several combinations of module-support-construction(210, 0.32, 0.021 K/W)/floor-material(398, 0.236W/mK) and channel height(15-30mm). As the result, it was found that the conjugate thermal conductance and the temperature distribution around the module depend on the thermal resistance of the module support, and the channel height. These configurations were designed to investigate on the feasibility of using the substrate as an effective heat spreader in the forced convective air-cooling of surface mounted heat source. The experimental results were discussed in the light of interactive nature of heat transfer through two paths, one directed from the module to the airflow and the other via the module support and the floor to the air.

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

An experimental study on heat transfer characteristics of variable conductance heat pipe (가변전열 히이트 파이프의 특성에 관한 연구)

  • 김주년;이영호;김용모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.4-16
    • /
    • 1984
  • The heat-pipe is characterised by the highly effective thermal conductance. In order to change the thermal conductance, the heat-pipe is connected to a reservior having a space which is filled with non-condensable gas. In normal operation, the vapour of working fluid will tend to pump the non- condensable gas into the reservoir and the gas-vapour interface situates at some point along the condenser section. The thermal conductance is affected by non- condensable gas. It is concluded that the suitable position of interface can be used to control the temperature of condenser section. In this experiment, the evaporating part is connected to the lowest position of heat-pipe. The copper heat-pipe which is filled with Freon-113 or distilled water as working fluid utilized. As results of experimental study, thermal conductance can be increased by the operating pressure which is infulenced by non-condensable gas. A correlative equation between the thermal conductance and the mass of non- condensable gas is also obtained.

  • PDF

Effect of Contact Conductance and Semitransparent Radiation on Heat Transfer During CVD Process of Semiconductor Wafer (접촉전도와 반투명 복사가 반도체 웨이퍼의 CVD 공정 중 열전달에 미치는 영향)

  • Yoon, Yong-Seok;Hong, Hye-Jung;Song, Myung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • During CVD process of semiconductor wafer fabrication, maintaining the uniformity of temperature distribution at wafer top surface is one of the key factors affecting the quality of final products. Effect of contact conductance between wafer and hot plate on predicted temperature of wafer was investigated. The validity of opaque wafer assumption was also examined by comparing the predicted results with Discrete Ordinate solutions accounting for semitransparent radiative characteristics of silicon. As the contact conductance increases predicted wafer temperature increases and the differences between maximum and minimum temperatures within wafer and between wafer and hot plate top surface temperatures decrease. The opaque assumption always overpredicted the wafer temperature compared to semitransparent calculation. The influences of surrounding reactor inner wall temperature and hot plate configuration are then discussed.

An Experimental Study on the affect of Non-condensable Gas Quantity on the Heat Transfer Performances in a Variable Conductance Heat Pipe (VCHP에서 불응축 가스량이 열전달 성능에 미치는 영향에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Lee, W.H.;Lee, K.J.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.19-24
    • /
    • 2003
  • This paper is to research the heat transfer characteristic in copper-water variable conductance heat pipes(VCHP) with a non-condensable gas and gas reservoir. The heat transfer characteristics in the VCHP have not yet been studied much researches. VCHP are used in many applications. These applications range from thermal control of components and systems on satellites, to precise temperature calibration duties, conventional electronics temperature control and thermal diodes. The practical use of VCHP is a simple way to control the temperature of satellites. As the quantity of NCG was increased, there was an increase in the saturation vapor temperatures. As the input heat has loaded from 90 W to 110 W, the difference of the evaporator surface is lower than $10^{\circ}C$.

  • PDF

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.28
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Transient Stability Analysis of Power System by Transient Energy Method (과도에너지법에 의한 전력계통의 과도안정도 해석에 관한 연구)

  • 김준현;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.2
    • /
    • pp.59-64
    • /
    • 1983
  • This paper deals with the transient energy method of transient stability analysis of multi-machine power system by improving the transfer conductance, the kinetic energy and the critical transient energy. The tranfer conductance is considered more correctly, the generators of system are seperated to two states (critical and the rest state)and the correction term of critical transient energy (to reference point) is added. This analysis is performed by digital computer simulation and the application of this method to two model systems has shown its superiority to other available methods.

  • PDF