• Title/Summary/Keyword: The optimal design stage

Search Result 491, Processing Time 0.037 seconds

Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm (Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가)

  • Choi Kee-Bong;Han Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

Noise Reduction of Muffler by Optimal Design

  • Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.947-955
    • /
    • 2000
  • This paper proposes an optimal design scheme to improve the muffler's capacity of noise reduction of the exhaust system by combining the Taguchi method and a fractional factorial design. As a measuring tool for the performance of a muffler, the performance prediction software which is developed by Oh, Lee and Lee (1996) is used. In the first stage of a design, the length and radius of each component of the current muffler system are selected as control factors. Then, the $L_{18}$ table of orthogonal arrays is adopted to extract the effective main factors. In the second stage, the fractional factorial design is adopted to take interactions into consideration, which the $L_{18}$ table of orthogonal arrays can not consider. For an optimal design, the $L_{27}$ table of orthogonal arrays with main and interaction effects is proposed and the noise factors such as temperature, background noise and humidity are analyzed for more efficient design simultaneously.

  • PDF

Optimal Design of a Ultra-precision Planar X-Y Stage (초정밀 평면 X-Y스테이지의 최적 설계)

  • Cho, Woong;Ko, Hyun-Jun;Kim, Jong-Hyeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1193-1197
    • /
    • 2008
  • Bridge is Most from stay of Gantry structures part. In compliance with oneself weight of the bridge deflecting, this occurs drops the location precision of the work tool. Also accelerative at the time of gives a serious load to Y axial motors which transfer the bridge damages. The motor with high-speed transfer of location control which is accurate makes disrupt. The malleability of the bridge to maintain consequently and necessary to minimize a weight. This paper the structural FEM interpretations of the stone and the aluminum alloy with the material by which will be used in the bridge and static deflected and a candle precise plane X-Y stage optimal design with character the interpretation result.

  • PDF

Optimal Design of Hybrid Motor for the First Stage Air Launch Vehicle (공중발사체의 1단 하이브리드 모터 최적설계)

  • 박봉교;권순탁;이재우;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.20-24
    • /
    • 2003
  • The feasibility of hybrid motor as a first stage of the air launch vehicle is investigated, and the result shows the hybrid motor can replace the solid motor. Optimal design study has been performed for the hybrid motor as a first stage of nanosat air launch vehicle. The first stage hybrid motor of the nanosat air launch vehicle, which uses the F-4E Phantom as a mother plane is designed for given mission requirements. Selected design variables are the number of ports, the initial oxidizer flux, the combustion chamber pressure, and the nozzle expansion ratio. The design results show that a hybrid motor can be successfully applicable to very small air launch vehicles which have severe physical constraints of length and diameter imposed by the mother plane.

  • PDF

A Study on the Optimal Structural Design using FEM for Micro Stage (마이크로 스테이지의 유한요소해석)

  • Kim, Jae-Yeol;Gwak, Lee-Gu;Han, Jae-Ho;Kim, Hang-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.60-65
    • /
    • 2002
  • For optimal design of micro stage, we measured the displacement of piezoelectric transducer that was based on voltage value. And the micro stage was analyzed using FEM with displacement data including voltage value of piezoelectric transducer. For verification of analysis results, the displacements were measured by using Laser-interferometer. And researchers confirmed to propriety on design of micro stage with FEM, we obtained 3.5% error rate between measurement results and analyzing results.

A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 최적 설계에 관한 연구)

  • 노금래;윤희택;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.251-256
    • /
    • 1999
  • In the preliminary design stage of Prestressed Concrete (PSC) Box Girder Bridges, the design factors(including depth, thickness of web, and jacking force) decided by inexperience designer could heavily affect the final design factors. So there is a possibility that the design ends up with an excessively wasteful design. To aim at an economical design with preventing an excessive design, the optimal design program has been developed by using ADS optimal program and SPCFRAME(PSC Bridge analysis program) in these studies. The optimal design program automatically calculates economically optimized design studies. The optimal design program automatically calculates economically optimized design factors by introducing the optimal design techniques of PSC box girder bridge design. The objective function for optimal design is material cost of box girder and constrained functions are constituted with design specifications and workability. The optimal design techniques used the Sequential Unconstraint Minimization Technique (SUMT) with performing the optimal design program. In this study, We designed unprismatic section bridge and prismatic section bridge in the same design condition by optimal design program developed in this study. By analyzing the results we suggested the practical form of tendon's layout comparing the optimal desingns on the basis of each tendon's layout.

  • PDF

An Optimal Design of a two stage relief valve by Genetic Algorithm (유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계)

  • 김승우;안경관;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

Two-Stage Experimental Design for Multiple Objectives (다수목적을 위한 2단계 실험)

  • Jang, Dae-Heung;Kim, Youngil
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The D-optimal design for the nonlinear model typically depends on the unknown parameters to be estimated. Therefore, it is strongly recommended in literature to use a sequential experimental design for estimating the parameters. In this paper two stage experimental design is discussed under many different circumstances including estimating parameters. The method is so universal to be applied to any mixture of objectives for any model including linear model. A hybrid approach is suggested to handle more than 2 objectives in two-stage experimental design. The design is discussed in approximate design framework.

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of measuring uncertainty of AFM system (원자현미경용 XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 원자 현미경의 측정 불확도 평가)

  • Kim D.M.;Lee D.Y.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1438-1441
    • /
    • 2005
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In this system, measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100um\times{100um}$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. Using this AFM system, 3um pitch specimen was measured. As a result, the uncertainty of total system has been evaluated.

  • PDF

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.