• Title/Summary/Keyword: The optimal design stage

Search Result 490, Processing Time 0.024 seconds

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

Ultra high precision Dual stage system Using Air bearing and VCM for Nano level Scanning (VCM을 이용한 나노 정밀도 스캐닝 용 초정밀 이중 스테이지)

  • Kim Ki-Hyun;Gweon Dae-Gab;Choi Young-Man;Kim Dong-Min;Nam Byoung-Uk;Lee Suk-Won;Lee Moon-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.103-112
    • /
    • 2005
  • This paper presents one-axis high precision scanning system and illustrates the design of modified $X-Y-{\theta}$ stage as a tracker using VCM and commercialized air bearings for it. The scanning system for 100nm resolution is composed of the 3-axis stage and one axis long stroke linear motor stage as a follower. In this study a previous proposed and presented structure of VCM for the fine stage is modified. The tracker has 3 DOF($X-Y-{\theta}$ motions by four VCM actuators which are located on the same plane. So 4 actuating forces are suggested and designed to create least pitch and roll motions. This article will show about the design especially about optimal design. The design focus of this fine stage is to have high acceleration to accomplish high throughput. The optimal design of maximizing acceleration is performed in restrained size. The most sensitive constraint of this optimal design is heat dissipation of coil. There are 5 design variables. Because the relationship between design variables and system parameters are quite complicated, it is very difficult to set design variables manually. Due to it, computer based optimal design procedure using MATLAB is used. Then, this paper also describes the procedures of selecting design variables for the optimal design and a mathematical formulation of the optimization problem. Based on the solution of the optimization problem, the final design of the stage is also presented. The results can be verified by MAXWELL. The designed stage has the acceleration of about 5 $m/s^{2}$ with 40kg total mass including wafer chuck and interferometer mirror. And the temperature of coil is increased $50^{\circ}C$. In addition, the tracker is controlled by high precision controller system with HP interferometer for it and linear scaler for the follower. At that time, the scanning system has high precision resolution about 5nm and scanning resolution about 40nm in 25mm/s constant speed

The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage (평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

A study on designing spindle stage using optimization of flexure (유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구)

  • Park, Jaehyun;Kim, Hyo-Young;Yoo, Hyeongmin
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

Design and Analysis of Two-Axis Stage Driven by Piezoelectric elements (피에조 구동형 2축 스테이지의 설계 및 해석)

  • 류성훈;한창수;최기봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.742-745
    • /
    • 2003
  • Piezoelectric elements driven ultra-precision stages have been used for high accuracy, fast response and high load rapacity. which are allowable to apply the stages to AFMs. Most of the piezoelectric driven stages are guided by flexure hinges for force transmission and mechanical amplification. However the flexure hinge mechanisms cause lack of position accuracy due to coupled and parasitic motions. Hence it is important that the mechanism design of the stage is focused on the stiffness of the flexure hinges to accomplish fast response and hish accuracy without the coupled and parasitic motions. In this study, some constraints for optimal design of a piezoelectric elements driven stage and a design method are proposed. Next, an optimal design is carried out using mathematical calculation. Finally the designed results are verified by FEM.

  • PDF

An Optimum Design of the Compressor Wheel and the Rotor-Bearing System of a Two-Stage Compressor (이단 압축기의 임펠러 및 시스템에 대한 최적설계)

  • Lee, Yong-Bok;Kim, Jong-Rip;Choi, Dong-Hoon;Kim, Kwang-Ho;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.129-134
    • /
    • 2001
  • The paper presents the optimal design of a oil-free two-stage compressor, which is driven by 75 kW motor at an operating speed of 39,000 rpm, and the pressure ratio of which is up to 4. First, an attempt is made to obtain the optimal design of a bump bearing which supports a compressor rotor. Second, bump bearings and shaft are considered simultaneously, and the weighted sum of rotor weight and frictional torque is minimized. Finally, the optimal geometry of compressor wheel is considered. The mean efficiency and the - minimum efficiency are maximized respectively. The results presented in this paper provide important design information necessary to reduce the energy loss.

  • PDF

A Design Problem of a Two-Stage Cyclic Queueing Network (두 단계로 구성된 순환대기네트워크의 설계)

  • Kim Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper we consider a design problem of a cyclic queueing network with two stages, each with a local buffer of limited capacity. Based on the theory of reversibility and product-form solution, we derive the throughput function of the network as a key performance measure to maximize. Two cases are considered. In case each stage consists of a single server, an optimal allocation policy of a given buffer capacity and work load between stages as well as the optimal number of customers is identified by exploiting the properties of the throughput function. In case each stage consists of multiple servers, the optimal policy developed for the single server case doesn't hold any more and an algorithm is developed to allocate with a small number of computations a given number of servers, buffer capacity as well as total work load and the total number of customers. The differences of the optimal policies between two cases and the implications of the results are also discussed. The results can be applied to support the design of certain manufacturing and computer/communication systems.

Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem (3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석)

  • Kim, Whee-Kuk;Han, Dong-Young;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

Kinematic Optimal Design of Excavator with Performance Analysis (굴삭기의 기구학적 최적설계와 성능해석)

  • 한동영;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

Optimal Design for Parallelogram Type Flexure Hinge (Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계)

  • Choi, Ju Yong;Eom, Sang In;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).