• Title/Summary/Keyword: The measurement Flight Data

Search Result 133, Processing Time 0.025 seconds

Moving Clutter Signal Measurement and Its Spectral Analysis for Airborne Pulse Doppler Radar (비행 탑재 레이다의 이동 클러터 신호 수집 및 도플러 스팩트럼 특성 분석)

  • Jeun, In-Pyung;Choi, Min-Su;Hwang, Kwang-Yun;Kwag, Young-Kil
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.439-442
    • /
    • 2005
  • An airborne radar performance can be sensitive to the variation of the Doppler center frequency and the spectral spread of the ground clutter return due to the radar platform moving and aspect angle of the scanning beam to the target. In this paper, for the performance test of the airborne pulsed Doppler radar system developed, the high-speed radar data acquisition system is implemented for acquiring the raw radar signal in real-time. Based on the various test scenarios from airborne-platform to the moving platform, the various radar target and clutter signals are collected and their spectrum is analyzed for the verification of the radar performance in the real-time flight test environments.

  • PDF

Estimation of Phosphorus Concentration in Silicon Thin Film on Glass Using ToF-SIMS

  • Hossion, M. Abul;Murukesan, Karthick;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2021
  • Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spectrometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped silicon thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard relative sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS, the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phosphorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes.

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

Channel Gap Measurements of Irradiated Plate Fuel and Comparison with Post-Irradiation Plate Thickness

  • James A. Smith;Casey J. Jesse;William A. Hanson;Clark L. Scott;David L. Cottle
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2195-2205
    • /
    • 2023
  • One of the salient nuclear fuel performance parameters for new fuel types under development is changes in fuel thickness. To test the new commercially fabricated U-10Mo monolithic plate-type fuel, an irradiation experiment was designed that consisted of multiple mini-plate capsules distributed within the Advanced Test Reactor (ATR) core, the mini-plate 1 (MP-1) experiment. Each capsule contains eight mini-plates that were either fueled or "dummy" plates. Fuel thickness changes within a fuel assembly can be characterized by measuring the gaps between the plates ultrasonically. The channel gap probe (CGP) system is designed to measure the gaps between the plates and will provide information that supports qualification of U-10Mo monolithic fuel. This study will discuss the design and the results from the use of a custom-designed CGP system for characterizing the gaps between mini-plates within the MP-1 capsules. To ensure accurate and repeatable data, acceptance and calibration procedures have been developed. Unfortunately, there is no "gold" standard measurement to compare to CGP measurements. An effort was made to use plate thickness obtained from post-irradiation measurements to derive channel gap estimates for comparison with the CGP characterization.

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Examining User Perception about Airline Untact Service Quality (항공사 비대면 서비스 품질에 대한 이용자 인식 연구)

  • Lee, Sojeong;An, Jaeyoung;Yun, Haejung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.545-570
    • /
    • 2022
  • Purpose: The purpose of this study was to explore dimensions to improve airline non-face-to-face(untact) service quality and identify shadow work dimensions in the digital environment among them. Methods: This study conducted mixed method. First of all, For finding out the dimensions of airline untact service quality, in-depth interviews were conducted from passengers. The collected data through the survey were analyzed using improved importance-performance analysis(IPA). Second, An online survey was conducted to quantitatively analyze user perception about airline untact service quality, and the importance performance of service quality at each dimension was identified through the revised IPA method. Results: The results of this study are as follows; Through in-depth interviews, 11 dimensions found out and 32 measurement items were developed. and then, through the revised IPA analysis, passengers were highly satisfied with "Cleanliness of in-flight service" and "Reliability of self check-in". Also, We found 3 shadow work dimensions such as "Ease of use of self check-in", "Usefulness of self check-in", and "Responsiveness of self check-in". Conclusion: Airline service providers have to keep high-satisfaction services and urgently improve less satisfied services. In particular, the dimensions related to shadow work have to be improved.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

Implementation of QuadCopter Dust Measurement System based on IoT using OSS(QDMS) (개방형 SW를 활용한 IoT기반 쿼드콥터 미세먼지 측정시스템 구현)

  • Kim, Jong-Hwan;Lee, Byung-Chan;Lee, Sung Hwa;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • In this study, there are regional limitations for the fine dust data provided by public data to represent the wide area air quality. It is about a method that can provide detailed data in a specific area beyond location restrictions. The goal of this implementation is to mount the IoT-based fine dust sensor on a quadcopter that can fly autonomously beyond the positional limitations of the current measuring station, which is fixed, and quickly move the fire-generating area and the area of rapid fine dust to make detailed measurements. Through this, the system is designed and implemented to enable the fundamental analysis of the occurrence. We designed a QDMS system and proposed a method to measure detailed changes in fine dust at a specific location through manufacturing and experiments.

Analysis on the Orbit Accuracy of KOMPSAT-5 (다목적실용위성 5호 궤도정밀도 분석)

  • Jung, Okchul;Chung, Deawon;Kim, Eunkyou;Yoon, Jaecheol;Hwang, Yoola
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.108-114
    • /
    • 2014
  • This paper describes the orbit accuracy of KOMPSAT-5, which has been in normal operations since the launch on Aug. 22, 2013. The analysis on the various GPS related data and the different methodologies for orbit estimation are carried out and compared with each other. The accuracy of precise orbit is confirmed to be 12.8cm($1{\sigma}$) on average using data from the in-flight dual frequency GPS receiver, GPS precise ephemeris, and IGS stations. In addition, the orbit estimation using single frequency GPS receiver provides the orbit solution around 2m level. And, the accuracy of orbit processing is 5m using on-board navigation solution, which has about 10m accuracy.