• Title/Summary/Keyword: The kuroshio

Search Result 195, Processing Time 0.138 seconds

Some Comments on the Preparation of the CSK Standard Chemical Solutions (CSK Standard Chemical Solution 과 그에 대한 몇가지 의견)

  • Won, Chong Hun
    • 한국해양학회지
    • /
    • v.4 no.2
    • /
    • pp.83-86
    • /
    • 1969
  • 해양관측의 세계적인 공통성으로 해서 염분검정법이 이미 오래 전부터 통일화 되었지만 근래에 와서는 용존산소량 정량법도 국제적인 Intercalibration을 하는 등규격화에의 기운이 나고 있다. 다시 Kuroshio 합동조사에서는 영양염의 정량에 있어 공통된 표준용액을 사용하므로써 조작상의 편리와 측정치의 신뢰성을 더욱 향상시키자는 의도에서 일본이 국제적인 영양염 표준용액의 조제 및 배포에 관한 안을 내어 1965년 Manila 회의를 거쳐 일본 상모중앙화학연구소의 관원씨가 이를 맡아 1966년부터 시작하여 1967년까지에 요오드산칼리움, 아질산염, 인산염, 규산염의 표준용액을 만들어 1968년 봄부터 시험적으로 일본국내와 동남아 수개국에 나누어 사용해 왔던 것이다. 다시 1968년 9월의 SCOR 의 영양염에 관한 Working Group 회의에서 CSK Std. Solution을 사용하여 세계각국에서 현재 사용하고 있는 영양염 분석방법의 Intercalibration을 하자는 회의가 있었고, 이것을 권고사항으로 SCOR에 보고하여 1968년 11월에 ICES가 승인하므로써 Intercalibration에 관한 원칙이 정해졌다. 동시에 Finland의 Koroleff씨와 Palmork씨가 organizer로 정해졌던 것이다. 이 보다 약간 앞서 본인이 상모중연에 가 있을 때 Std. Solution으로서 아질산염용액 만으로 각종무기질소화합물의 표준용액으로 대용한다는 것은 비합리적이므로 질산염과 암모늄염의 표준용액이 있어야 한다고 주장하여 우선 질산염용액을 추가로 만들기로 하여 1968년 11월부터 표준물질의 정제부터 시작 되었다. 1969년 1월에 Intercalibration 에 관한 구체적인 회의를 위해 Scripps 해양연구소에 관원, Wooster Rakestraw, Cieskes씨등이 모여 우선 일본상모중연에서 만들고 있는 인산염, 질산염, 아질산염, 규산염의 CSK 표준용액을 표준시료로하여 SCOR 과 ICES의 해양화학분과에서 선정한 세계 100개처에 나누어 현재 각자가 사용하고 있는 방법의 정밀도와 정확도를 check하는 소위 International intercalibration을 1969년 9월부터 시작하기로 확정을 보았고, 동시에 구체적인 지시가 있었던 것이다. 이시료를 받는 사람에게는 다만 그것의 농도범위만 알려주고 정확한 농도는 Koreleff와 관원씨만이 알고 있기로 하여 측정에 분석자의 주관이 개입되지 못하도록 했고, 분석치는 SCOR가 모아 해석하되 번호제로 하여 어떤 나라의 누구가 했다는 것은 밝히지 않기로 되어 있다. 이같은 내력으로 CSK Std. Solution이 국제적인 Intercalibration용의 표준시료로서 시험적으로 사용되기 까지는 되었으나, CSK Std. Solution 그자체에 관해서는 아직도 해결해야 할 점, 개량을 요하는 점이 많다. 이하에서는 주로 개량을 요하는 점에 관해 몇가지 언급하고자 한다.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

Korean Drift Gillnet Fishery For Flying Squid , Ommastrephes bartrami ( Lesueur ) , and the Variation of Oceanographic Conditions in the North Western Pacific Ocean (한국의 빨간 오징어 유자망 어업과 북서태평양의 해황 변동)

  • 임기봉
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.3
    • /
    • pp.8-16
    • /
    • 1986
  • The fishing conditions of flying squid, ommastrePhes barsram(Lesueur), in the North Pacific Ocean was studied based on the horizontal water temperature data, satellite data from NOAA and statistical data of flying squid fisheries which were collected from 1980 to 1984. The obtained results were as follows; 1. Since 1979, the Korean drift giIlnet fishery for flying squid was launched in North Pacific. Number of operating vessel and catch of flying squid increased gradually every year. The number of vessels were 111 and their annual catches were 42, 977 M/T in 1984. Therefore, Korean drift giIlnet fishery for this species has played an important role in the products of Korean high-sea fisheries. 2. In the beginning of the fisheries, fishing grounds was formed in the west of long. 1800E. In 1982, in consequence of the center which extended eastward, the fishing ground was formed long. 166$^{\circ}$W in the central North Pacific Ocean. Since 1983, the fishing grounds were formed as far as long. 161$^{\circ}$W. The range of general fishing season in the central North Pacific was from June to August. After september, fishing ground was shifted to the west, in the Northwestern Pacific. 3. The Predominant fishing season for the flying squid was August through January of the coming year. Optimum water temperature for flying sguid at surface layer in the Pacific Ocean ranged from 11 $^{\circ}$e to 17$^{\circ}$e in winter, 13$^{\circ}$e to 17$^{\circ}$e in spring, 12. 8$^{\circ}$C to 19.7$^{\circ}$e in summer and 1O.6$^{\circ}$e -18.7$^{\circ}$e in fall. 4. In summer, the Oceanographic condition in the North Pacific Ocean showed that the water temperature at surface layer was lower in 1980, 1983 and higher in 1981, 1982 and 1984 as compared with mean annual water temperature. 5. The characteristics df oceanographic conditions in the fluation, disformation, mixing and other factors of the Kuroshio and Oyashio currents, which have considerably influenced upon the water masses of the areas. 6. The data and information on surface thermal Structure interpreted from Infrared Satellite Imaginary from NOAA-7 and NOAA-8 are very available in estimating water temperature on the areas and investigating the major fishing grounds. 7. According to the fisheries statics of Japanese drift gilInet, the annual catches of flying squid considerably decreased from 225, 942 M/T in 1983 to 133, 217 M/T in 1984. 8. The fishing grounds in the central North Pacific in several fishing seasons were formed as follows: In June, the initial fishing season, the fishing grounds were formed in the vicinity of lat. 35 - 40oN, the central North Pacific east of 179$^{\circ}$E. In July, the fishing ground were formed in the wide arEa of the central North Pacific north of 400N and long. 174$^{\circ}$E-145$^{\circ}$W In Auguest, concentrative fishing operation carried out in :he central North Pacific north of 43$^{\circ}$N and East of 165$^{\circ}$W. On the other hand, in September, main fishing grounds were disappeared and moved to the west.

  • PDF

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

The Distribution of Nutrients and Chlorophyll in the Northern East China Sea during the Spring and Summer (동중국해 북부해역에서 봄과 여름동안 영양염과 엽록소의 분포특성)

  • Kim, Dong-Seon;Shim, Jeong-Hee;Lee, Jeong-Ah;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.251-263
    • /
    • 2005
  • In order to study changes in the marine ecosystem of the East China Sea derived by the global warming and construction of the Three Gorges Dam in the middle of the Changjiang, temperature, salinity, nutrients, and chlorophyll-a were studied intensively in the northern part of the East China Sea during the summer of 2003 and spring of 2004. According to the previous studies, the upwelling of the Kuroshio Current and the Changjiang resulted in a major inputs of nutrients in the East China Sea, but these two inputs may not contribute gently to a build up of nutrients in the northern East China Sea. In spring, relatively high concentrations of nitrates and phosphates were observed in the western part of the study area, which resulted from the supply of high concentrations of nutrients showing up in the surface waters as a result of vertical mixing from the ocean bottom. The concentrations of nitrates and phosphates observed in summer were lower than those in spring, since the surface waters were well stratified by the larger discharge of fresh water from the Changjiang in summer. The surface nitrate/phosphate ratios ranged from 1.3 to 16 in spring and from 1.1 to 15 in summer and were lower than the Redfield ratio of 16, indicating that the growth of phytoplankton is limited by nitrogen. This results are contrary to the previous results, in which the growth of phytoplankton was limited by phosphate in the East China Sea. The reason for this contrary result is that most nutrients in the surface waters are supplied by vertical mixing from the bottom waters with low nitrate/phosphate ratios, not directly influenced by the Changjiang with high nitrate/phosphate ratios. The depth-integrated chlorophyll observed in summer was similar to the previous results, but those measured in spring were almost twice as high as those found in previous results. The depth-integrated chlorophyll in spring was higher than that of summer, which results from high concentrations of nitrates and phosphates in the surface waters in spring due to active vertical mixing.

An Analysis of Oceanic Current Maps of the Yellow Sea and the East China Sea in Secondary School Science Textbooks (중등학교 과학교과서의 황해 및 동중국해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Lee, Sang-Ho;Lee, Eunil;Byun, Do-Seong;Kim, Young-Taeg
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.439-466
    • /
    • 2014
  • Since the unification of the diverse oceanic current maps of the East Sea in secondary school science textbooks has recently been accomplished, there have been increasing requirements for the production of a current map of the Yellow Sea (YS) and the East China Sea (ECS). This study, as its first attempt, facilitated the prospective production process of the unified oceanic current maps in YS and ECS by analyzing the maps of scientific articles and those of the present textbooks as of 2014. First of all, the analogue current maps of the textbooks and scientific articles were digitalized to retrieve the characteristics of current maps quantitatively and to make intercomparison of the maps. The currents of both YS and ECS such as the Kuroshio Current, the Taiwan Warm Current, the Tsushima Warm Current, the Yellow Sea Warm Current, the Chinese Coastal Current, the Korea Coastal Current, and the Changjiang River Flow were selected and analyzed. We made 18 items to investigate the paths of the currents. Analyses of the oceanic current maps of secondary school science textbooks and scientific articles with respect to the selected criteria revealed that the current maps of the textbooks were considerably different from the up-to-date knowledge of the current maps acquired from the scientific articles. In addition, since the currents of YS and ECS have strong seasonality, we suggest that they should be presented with at least two current maps for summer and winter in the textbooks, which may go through active discussions among experts.

Phytoplankton Studies in Korean Waters. IV. Phytoplankton in the Adjacent Seas of Korea (한국해역의 식물플랭크톤의 연구. IV. 동해, 남해 및 서해해역의 식물플랭크톤)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.4 no.2
    • /
    • pp.49-67
    • /
    • 1969
  • A quantitative phytoplankton study in Korean waters was commenced in 1964 as a part of the primary production studies of Koreans seas, and it was continued with the cruises for Cooperative Studies of the Kuroshio(C.S.K) in 1965-1968. Phytoplankton samples were taken by dipping about 500ml of sea water from the surface, and then fixed by ading neutralized formlin. This report deals with the results obtained during 1965-1966. I examined a total of 298 samples of surface phytoplankton collected in the wate neighboring Korea in the above-mentioned period, and detected 147 species of diatoms and 22 species of dinoflagellates. Among them 123 species of diatoms and 18 species of dinoflagellates occured in the Japan Sea region, 133 species of diatoms and 11 species of dinoflagellates occured in the Korea Strait region, and 49 species of diatom and 8 species of dinoflagellates occured in the Yellow Sea region. And thd phytoplankton standing crops are dept in a fair abundance in the Japan Sea area all the year round, and are poor in the Yellow Sea area. The seas surrounding Korea are divided into seven regions by the planktological characteristics; northern and southern parts of the Japan Sea, eastern, western and southern parts of the Korea Strait, southern and northern parts of the Yellow Sea. The representative of the phytoplankton community in each sea region is generalized as follows; northern part of the Japan Sea is dominant with Chaetoceros group, southern part of the Japan Sea is dominant with Chaetoceros group and Skeletonema costaum, eastern part of the Korea Strait is dominant with Chaetoceros group and Pleurosigma sp., southern part of the Korea Strait is dominant with Chaetoceros group and Rizosolenia group, western part of the Korea Strait is most poor in phytoplankton, southern part of the Yellow Sea is dominant with Pleurosigma sp. and Coscinodiscus group, and northern part of the Yellow Sea is dominant with Pleurosigma sp. and Eucampia zoodiacus. Chaetoceros curvisetus, Leptocylindrus danicus, Pleurosigma normanii, Thalassionema nitzschioides, Thalassiothrix flauenfeldii appeared all the year round in the neighboring sea of Korea. There were 24 species (18 species of diatoms and 6 species of dinoflagellates) of the pecuriar phytoplankton in the Japan Sea, 27 species (25 species of diatoms and 2 species of dinoflagellates) of that in the Korea, and 7 species (5 species of diatoms and 2 species of dinoflagellates) of that in the Yellow Sea, respectively.

  • PDF

Seasonal Variation of the Water Type in the Tsushima Current (대마난류 수형의 계절 변화)

  • CHO Kyu-Dae;CHOE Yong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.331-340
    • /
    • 1988
  • Using the oceanographic data during 196s~ 1983, the seasonal variation of the water type in the Tsushima Current is discussed by analyzing the thermosteric anomaly $(\delta_T)$. By investigating with the index of $33.8\%_{\circ}$ in salinity, it is shown that the low saline water inflowed through the Korea Strait affects the variations of water type in surface layer from summer to fall. On the sea surface, the value of $\delta_T$ is affected mainly by the sea surface temperature (SST). However, in summer, $\delta_T$ is temporarily influenced by the transitional characteristic of the surface salinity. It has the minimum value in winter when the SST is the highest and the sea surface salinity is the lowest. In fall, it decreases as the SST decreases. Specifically, the value of $\delta_T$ is 779 cl/t in August in the region of Korea Strait and 667 cl/t in September in the East Coast of Korea. These values are larger than that of the Kuroshio where is 622 cl/t in August. This phenomenon is due to the inflow of low saline water into these area during summer. In loom depth, the seasonal variation of the $\delta_T$ is not so significant as the surface and is mainly dependent on the annual temperature variation. In general, $\delta_T$ decreases as the Tsushima Current flows to the north.

  • PDF

A Dinamic Consideration on the Temperature Distribution in the East Coast of Korea in August (8월의 한국동안에서의 수온분포에 관한 역학적 고찰)

  • Seung, Young Ho
    • 한국해양학회지
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 1974
  • The water temperature distribution and the water movement closely related with it, in the east side of Korea, was condidered. Special emphasis was paid on the low temperature phenomenon near Ulgi. It was known from the temperature distribution in the east side of Korea that the Tsushima current continues to flow northward at the surface near Sokcho. Also the influence of the cold water extends from the North to the South with increasing depth. The formation of the cold core near Ulgi was explained as due mainly to the existence of the boundary layer near the surface, and partly to the effect of the wind. This inclination of the boundary layer has the value of about 3.0m/Km, and the lower cold current velocity computed using this value lies in the range of those observed by Nishida(1926, 1927). The upwelling velocity was computed approximately as 1.4 10$\^$-3/ cm/sec, and the maximum distance to which the boundarylayer can rise or fall from it's equilibrium position was considered as below 10m.

  • PDF

The Relationship between the Characteristics of Dissolved Oxygen and the Tsushima Current in the Japan Sea in Summer (하계 동해의 용존산소 분포특성과 대마난류)

  • HONG Chol Hoon;CHO Kyu Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.291-297
    • /
    • 1983
  • This paper describes the variations of the distribution of dissolved oxygen in the Japan Sea in summer during 1974-1977. In the Tsushima Current region of the Japan Sea the salinity maxima appears frequently in summer and the dissolved oxygen at the salinity maximum is less than that in the Japan Sea Proper Water. The Japan Sea is divided into three parts with respect to the type of vertical profiles of dissolved oxygen: The southern region of about $35^{\circ}N$ which has low dissolved oxygen similar to those in the Kuroshio region, the Japan Sea Proper Water region, and the area between about $36^{\circ}N$ and $40^{\circ}N$ which has high dissolved oxygen. The ranges of the dissolved oxygen and thermosteric anomaly(${\delta}_T$) at the salinity maximum are roughly between 4.9 and 6.5 m/l and between 210 and 240 cl/t respectively. The most frequent ranges of those values are between 5.5 and 5.7 ml/l and between 230 and 240 cl/t. The northern boundary of the Tsushima Current can be known by the characteristics of the distribuion of dissolved oxygen.

  • PDF