• Title/Summary/Keyword: The improved soil

Search Result 1,107, Processing Time 0.043 seconds

An Improved Soil Core Sampler (개량(改良)된 토양(土壤) 코어 시료(試料) 채취기(採取器))

  • Hwang, Jae Hong;Son, Yowhan;Kim, Jong Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.788-791
    • /
    • 2001
  • An improved double-cylinder hammer-driven sampling device was designed to extract undisturbed soil cores. The improvements consist of 1) separation of hammer from the driving head, 2) a split inside cylinder, and 3) a plastic sample holder. Pushing the sampler deep into the soil before hammering would result in less compression of the sample. Core samples should be taken in soils of medium moisture content. The improved soil core sampler provides sufficiently accurate volumetric soil samples with original soil layers and soil cores of 40cm in length and 5cm in diameter.

  • PDF

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

Adaptability of Improved Wild Vine in Slopled Highland and It's Effect of Soil Conservation (개량머루의 고랭지 적응성과 토양보전 효과)

  • Lee, Gye-Jun;Lee, Jeong-Tae;Yoon, Yeong-Nam;Jin, Yong-Ik;Park, Chol-Soo;Zhang, Yong-Seon;Joo, Jin-Ho;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.419-424
    • /
    • 2008
  • Objective of this study was to evaluate the adaptation and the soil conservation effect of improved wild vine in sloped upland of highland about 600m from sea level in Korea. A mainly producing district of the improved wild vine in Korea was distributed 230m to 540m from sea level, and its rainfall ranged 1,200 to 1,700 mm. The lowest temperature was from -19.6 to $-25.4^{\circ}C$. Their soil texture was from sandy loam to clay loam, where drainage class was well drained and the contents of soil organic matter and total nitrogen in the improved wild vine's cultivation area were higher than those of Chinese cabbage's cultivation area in the highland. According to improved wild vine's cultivation methods, the amounts of soil erosion were 25.5,4.1, and $1.8MT\;ha^{-1}$ in clean culture, part sod + mulching, and nature sod, respectively. Those were below 30 to $80MT\;ha^{-1}$ of sloped upland at highland in Korea. The result suggests that it is possible to cultivate the improved wild vine over wintering at 600m of highland above the sea level. We can substitute the improved wild vine for Chinese cabbage in the highland for soil conservation.

Vertical and torsional soil reactions for radially inhomogeneous soil layer

  • El Naggar, M. Hesham
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.299-312
    • /
    • 2000
  • The response of an embedded body to dynamic loads is greatly influenced by the reactions of the soil to the motion of the body. The properties of the soil surrounding embedded bodies (e.g., piles) may be different than those of the far-field for a variety of reasons. It may be weakened or strengthened according to the method of installation of piles, or altered due to applying one of the soil strengthening technique (e.g., electrokinetic treatment of soil, El Naggar et al. 1998). In all these cases, the shear strength of the soils and its shear modulus vary gradually in the radial direction, resulting in a radially inhomogeneous soil layer. This paper describes an analysis to compute vertical and torsional dynamic soil reactions of a radially inhomogeneous soil layer with a circular hole. These soil reactions could then be used to model the soil resistance in the analysis of the pile vibration under dynamic loads. The soil layer is considered to have a piecewise, radial variation for the complex shear modulus. The model is developed for soil layers improved using the electrokinetic technique but can be used for other situations where the soil properties vary gradually in the radial direction (strengthened or weakened). The soil reactions (impedance functions) are evaluated over a wide range of parameters and compared with those obtained from other solutions. A parametric study was performed to examine the effect of different soil improvement parameters on vertical and torsional impedance functions of the soil. The effect of the increase in the shear modulus and the width of the improved zone is investigated.

Study on The Estimation of Pipeline. Soil Interaction Force. during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관$\cdot$지반 상호작용력의 산정에 관한 연구)

  • Kim, Tae-Wook
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.170-175
    • /
    • 2003
  • The ASCE formula of pipeline' soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline. soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved, the limitation of the existing formula and semi-analytical relationship are discussed.

  • PDF

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF

A Study on Ground Reinforcement Effect with Structural Forms of Improved Soil (개량체 구조형상에 따른 지반보강효과 연구)

  • Park, Kyunghan;Jang, Gisoo;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2014
  • The aim of this study is to analyze the mechanical characteristics and settlement feature of the composite ground with structural form changes. The laboratory model test is a soil tanker to be contained with clay and grid form improved soil, which is conducted in total 9 case with the uniaxial compressive strength of improved soil and replacement ratio of improved soil. The numerical analysis for variation of stress distribution ratio with depth was performed in the same conditions which are the laboratory model test. As a result, stress distribution ratios in mid and high replacement ratio are increasing and settlement is decreasing, except low replacement ratio. This study is presented for form effect ratio and settlement reduction factor with change of structure form, which is able to be helpful in further research and reference for change of structural forms at composite ground.

Roots Growth Characteristics of Zelkova serrata Makino. after Replanting in the Reclaimed Land from the Sea - On the Root Structure and Spatial Distribution of Fine Root Phytomass - (임해매립지의 느티나무 식재 이후 뿌리 생장특성 -뿌리구조 및 세근의 공간적 분포를 중심으로-)

  • Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.5
    • /
    • pp.46-55
    • /
    • 2007
  • This study was carried out to analyze both the root structure and the fine root phytomass of the vertical and horizontal distribution of Zelkova serrata Makino. which was transplanted in the reclaimed land from the sea in Gwangyang, Jeonnam, South Korea. The base ground was reclaimed land from the sea. $Z_1$ of the planting ground was filled to a $100{\sim}150cm$ thickness with the improved soil instead of the reclaimed soil from the sea, $Z_2$ of the planting ground was covered to a $20{\sim}30cm$ thickness with the improved soil and $Z_3$ of the planting ground was mounded to 120cm thickness with the improved soil on the reclaimed land from the sea. In addition, $Z_4,\;Z_5\;and\;Z_6$ of the planting grounds were at the large-sized mound on the reclaimed land from the sea. $Z_4$ of the planting ground was located at the lowest level, $Z_5$ planting ground was located at the slope and $Z_6$ planting ground was located at the top of the large-sized mound. The large-sized mounds contain 3 layers, the base layer was reclaimed land from the sea and the second layer was mounded to a $200{\sim}300cm$ thickness with the desalinized soil from the sea on the base layers and the finally layers were mounded to a $80{\sim}120cm$ thickness with improved soil on the second layer. The planting grounds $Z_3,\;Z_4,\;Z_5\;and\;Z_6$ developed roots such as tap roots, lateral roots and heart roots. However, in $Z_1\;and\;Z_2$ roots development were inhibited. The fine-root phytomass of the 6 planting ground types was as follows: $113.5g\;DM/m^2$ for $Z_5$, $105.5g\;DM/m^2$ for $Z_4$, $88.3g\;DM/m^2$ for $Z_3$, $81.0g\;DM/m^2$ for $Z_6$, $73.0g\;DM/m^2$ for $Z_2$, $43.3g\;DM/m^2$ for $Z_1$. The vertical distribution of the fine root phytomass decreased from the upper to the deeper soil profiles in the 6 mound types. The fine root phytomass was $43.3{\sim}71.8%$ in a $0{\sim}20cm$ thickness of soil layer and it decreased according to the distance from the nearest trees. The root growth in the improved soil was better than in the reclaimed soil from the sea. However, root growth decreased more in the disturbed soils even though the planting grounds contained the improved soils. The retarded development of roots and the spatial distribution patterns of the fine root phytomass were closely connected to the reclaimed soil from the sea. In the disturbed soil, the soil hardness and alkalic cation($Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+}$). were high and the soil water was lacking. We suggest that the construction of planting grounds and the improvement of bad soil are necessary for the proper and effective growth of landscaping plants.

Evaluation of the Depth of Improved Soil on Weathered Soil Slopes by Rainfall Duration (강우지속시간에 따른 풍화토사면의 개량토 심도 평가)

  • Yu, Jin-Ju;Lee, Jong-Woo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, irregular torrential rainfall have frequently occurred due to abnormal climate, and landslide damage is increasing. In Korea, more than 70% of the total land is mountainous areas, appropriate measures are needed to prevent landslides by heavy rainfall. When improved soil is applied to the surface of the slope, it is possible to suppress an increase in groundwater level due to rainfall penetration and secure stability of the slope. In this study, the appropriate depth of improved soil that can confirm the increase in groundwater level and secure stability by applying improved soil to the weathered soil slope was studied. A total of three cases were analyzed for the slope of the cross-section: standard slope for weathered soil (1:1.5, 1:1.8, and 1:2.0). For rainfall conditions, referring to the regional frequency probability rainfall provided by the Water resource Management Information System, the increase in groundwater level by stage was confirmed by assuming a 500-year frequency precipitation maximum duration of 48 hours. As a result of the study, in the case of natural slopes, the slope was completely saturated before 48 hours the rainfall duration, and there was a possibility of collapse. the improvement depth in the slope of 1:1.5 was appropriate for more than 1m from the surface regardless of the rainfall duration, and in the the slope of 1:1.8 was appropriate of 1m for more than 36 hours. in the slope of 1:2.0, it was appropriate for that safety when improved soil of 0.5m for rainfall duration 48 hours or more.

Effects of the Pasture Types and the Leveling Methods of Seedbed on the Runoff , Soil Loss , Botanical Composition , Dry Matter Yield of Forage and Economical value (초지형과 파종상 정지방법이 유거수량 , 토양 유실량 , 목초의 식생구성 , 건물수량 및 경제성에 미치는 영향)

  • 이종경;임영철;윤세형;김맹중;박근제;양종성;최선식;이성철
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 1998
  • This study was conducted to investigate the effects of the pasture types and the leveling methods of winding slope land for seedbed on the runoff, soil loss, botanical composition, dry matter yield of forage and economical value at the Experimental Field of Grassland and Forage Crops Division, National Livestock Research Institute, Suweon, from 1994 to 1995. The results obtained are summarized as follows: 1. Runoff of the improved land was higher than that of the unimproved land in the top grass and bottom grass. 2. Soil loss of the improved land was higher than that of the unimproved land in the top and bottom grasses in the first year. However, it was slightly higher in the unimproved land, and all of it were greatly decreased in the second year. 3. The percentage of grasses coverage was increased with the improved land in the first year, and it was not different between the improved land and unimproved land in the second year. Also, it was slightly increased in the bottom grasses. 4. Dry matter yield of grasses was increased with improved land at the top and bottom grasses. DM yield of grasses was increased in the top grasses in the first year and bottom grasses in the second year, respectively. 5. The establishment cost of grasses was decreased with wages decrement, and the management cost was saved about 1,116,000 won per ha with improved land. The results demonstrated that although soil loss was increased by leveling methods of improved land irrespective of pasture types in the first year, it was decreased with time little by little. Also, improved land was very good for grasses coverage, dry matter(DM) yield and economical value.

  • PDF