• Title/Summary/Keyword: The final settlement

Search Result 153, Processing Time 0.03 seconds

Cast study on the Design Application of Final Settlement in Soft Ground (연약지반 최종침하량의 설계 적용성에 관한 사례연구)

  • Kim, Young-Su;Park, See-Boum;Kim, Kyung-Tae;Kim, Chang-Hyun;Kim, Hyun-Gu;Yook, Il-Dong;Kim, Hung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.948-955
    • /
    • 2005
  • In this case of study, Incheon International Airport 2nd phase site preparation 1st section estimated final settlement to improve soft ground. Final settlement is very important in preloading method. Recently, Hyperbolic method, Hoshino method and Asaoka method are used mostly in prediction of final settlement and this paper, Comparing a result of Final settlement, used to Artificial Neural Network. The structure of Dynamic Artificial Neural Network which predicted Final settlement, has application to Young_Jong Island other site, If new investigation data will be added. Also, It is expected to save measuring_system cost in soft ground.

  • PDF

Design charts for consolidation settlement of marine clays using finite strain consolidation theory

  • Jun, Sang-Hyun;Lee, Jong-Ho;Park, Byung-Soo;Kwon, Hyuk-Jae
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, design charts for estimating consolidation settlement are proposed according to finite strain consolidation theory using a nonlinear constitutive relationship equation. Results of parametric sensitivity analysis shows that the final settlement, initial height, and initial void ratio exerted the greatest effect, and the coefficients of the void ratio-effective-stress. Proposed design charts were analyzed for three regions using a representative constitutive relationship equation that enables major dredged-reclaimed construction sites in Korea. The regional design charts can be calculated accurately for the final settlement because it is applied directly to the numerical analysis results, except for reading errors. A general design chart applicable to all marine clays is proposed through correlation analysis of the main parameters. A final self-weight consolidation settlement with various initial void ratios and initial height conditions should be estimated easily using the general design chart and constitutive relationship. The estimated final settlement using the general design chart is similar to the results of numerical analysis obtained using finite strain consolidation theory. Under an overburden pressure condition, design charts for estimating consolidation settlement are proposed for three regions in Korea.

Relations between Initial Displacement Rate and Final Displacement of Arch Settlement and Convergence of a Shallow Tunnel (저심도 터널의 천단침하 및 내공변위의 초기변위속도와 최종변위의 관계)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.110-119
    • /
    • 2013
  • It is generalized to measure the arch settlement and convergence during tunnel construction for monitoring its mechanical stability. The initial convergence rate a day is defined from the first convergence measurement and the final convergence defined as the convergence measured lastly. The initial and the final tunnel arch settlement are defined like the preceding convergence. In the study, the relations between the initial and final displacements of a shallow tunnel are analyzed. The measurements were performed in the tunnel of subway 906 construction site in Seoul. The overburden is 10-20 m and the tunnel goes through weathered soil/rock. The width and height of the tunnel are about 11.5 m, 10m, respectively. So this is a shallow tunnel in weak rock. The length of tunnel is about 1,820 m and the tunnel was constructed in 2 stages, dividing upper and lower half. The numbers of measurement locations of arch settlement and convergence are 184 and 258, respectively. As a result, the initial displacement rate and the final displacement are comparatively larger in the section of weathered soil.

Final Settlement Prediction Methods of Embankments on Soft Clay

  • Lee, Dal-Won;Lim, Seong-Hun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.68-77
    • /
    • 2000
  • Analyses, in which load was regarded as instant load and gradual step load, respectively, were performed with data measured on a gradually loaded field, and the results were inspected to find the effect of load conditions, and the final settlements which were predicted by Hyperbolic, Tan's, Asaoka's, and Monden's methods were compared with each other. Settlement curves in which load was regarded as instant load and gradual step load being to coincide at twice the time of duration of embankment. On the ground installed vertical drain, from the results of Hyperbolic, Tan's, Asaoka's, Monden's, Curve fitting I, and Curve fitting II (simple, carrillo) methods it was concluded that Asaoka, Curve fitting I, and Curve fitting II methods are reliable for prediction final settlement with back analysis.

  • PDF

Stratum Division Effect of Consolidation Settlement Formula Using Compression Index (압축지수를 이용한 압밀침하량 계산식의 압밀층 두께 분할효과)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • The final consolidation settlement is important factor in soft ground improvement because of settlement management and completion time. The compression index, which is slope of primary consolidation curve, is commonly used for the calculation of final consolidation settlement in clay layer. The existing final consolidation settlement is calculated in total consolidation layer that is assumed as one layer. This paper describes analysis result of the acquired settlement, when the consolidation layer is divided as several layer. The consolidation settlement increased according to increase of the divided layer and then it is converged. This result was unrelated to surcharge load. The division effect of layer is very high when the surcharge load is less than the consolidation layer thickness. The division effect of layer is 1.2 to 1.4 in the general surcharge load, and this value can be apply as safety factor in the calculation of final consolidation settlement.

The evaluation of applicability for several final settlement prediction methods to field settlement management by measurement results carried on embankment on the soft clays (계측결과를 이용한 연약지반상 성토시의 최종침하량예측기법들의 현장적용성)

  • Kim, Jong-Ryeol;Gang, Hee-Bog;Choi, Ju-Myoung;Hwang, Soung-Won;Kim, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.924-931
    • /
    • 2005
  • In this study, we intended to compare and examine several settlement management methods by analyzing measurement results of a site of the industrial complex at ${\bigcirc}{\bigcirc}$ province. We predicted and analyzed the amount of final settlement by using generally used final settlement methods as like Hyperbola method, Hoshino methods and Asaoka method. And then, We compared the predicted results with that of measurement. On the basis of comparison of the three methods, Hyperbola method was the most convenient and accurate method of the three methods and if a sufficient time was given enough after embankment construction, the use of Hoshino method was possible. In the case of the Asaoka methods, it was possible to know that it had an approaching tendency to the measured one with increasing time interval spent on analysis. Therefore, in order to predict settlement behavior more accurately it is needed to understand their advantages and shortcomings sufficiently and pay attention to application to the real site.

  • PDF

Modification of the Hyperbolic Method for Staged Fill (단계성토 시 쌍곡선법의 개선된 해석방법)

  • Jang, Suk-Myung;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.513-523
    • /
    • 2022
  • The purpose of settlement management when treating soft ground through preloading is to determine the amount of settlement, check the progression of consolidation, and compare the settlement with the target settlement amount. Of the various methods available for predicting settlement based on measured data, the hyperbolic method was used in this study to analyze the settlement behavior of soft ground considering the creep behavior resulting from staged fill. Two versions of the method were used: the existing hyperbolic method, and a modified hyperbolic method. The existing hyperbolic method predicts the settlement amount using data for the final settlement section only during soft ground treatment through staged fill, for which the coefficient of consolidation behavior (k) was computed to give a predicted final consolidation settlement amount of Sr = 1.05 cm. In comparison, using the modified method, a predicted final consolidation settlement of Sr = 0.50 cm is obtained by considering the data for each staged fill section. These results show that the modified method considering data from the staged settlement was more accurate than the existing method considering data only from the final settlement section. This modification to the hyperbolic method therefore represents an improvement in performance over the existing method.

A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method (기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구)

  • Kang, Seyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.29-38
    • /
    • 2019
  • In stability and settlement management of soft ground, the settlement prediction technology has been continuously developed and used to reduce construction cost and confirm the exact land use time. However, the preexistence prediction methods such as hyperbolic method, Asaoka method and Hoshino method are difficult to predict the settlement accurately at the beginning of consolidation because the accurate settlement prediction is possible only after many measurement periods have passed. It is judged as the reason for estimating the future settlement through the proportionality assumption of the slope which the preexistence prediction method computes from the settlement curve. In this study, ARIMA technique is introduced among time series analysis techniques and compared with preexistence prediction methods. ARIMA method was predictable without any distinction of ground conditions, and the results similar to the existing method are predicted early (final settlement).

A Study on the Applicability of Hyperbolic Settlement Prediction Method to Consolidation Settlement in the Dredged and Reclaimed Ground (준설매립지반의 압밀침하에 대한 쌍곡선 침하예측기법의 적용성 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.11-17
    • /
    • 2008
  • Applicability of hyperbolic settlement prediction method to consolidation settlement in the dredged and reclaimed ground was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio - effective stress - permeability and typical self-weight consolidation curves with time were obtained by analyzing centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve obtained by using Terzaghi's consolidation theory was compared with results predicted by the hyperbolic method. It was found to have its own inherent error to predict final consolidation settlement. From results of analyzing thc self-weight consolidation with time by using this method, it predicted relatively well in error range of 0.04~18% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. However, it overestimated the final settlement with large errors if those relation curves were nonlinear.

  • PDF

Comparative Analysis of Final Consolidation Settlement by Degree of Consolidation in Soft Soils of Yeongam-Haenam Areas (영암-해남 연약지반의 압밀도 변화에 따른 최종침하량 비교분석)

  • Kim, Tae-Wan;Nam, Geon;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.25-33
    • /
    • 2023
  • To effectively improve soft soils, it is necessary to perform ground behavior characteristics and stability management through measurement activities when embankment of structures on soft soils is conducted. However, there are many differences between the actual ground behavior and the initial design plan. To address this issue, this study analyzed the measured settlement in the Yeongam-Haenam areas using the Hyperbolic method to predict the settlement based on the measurement data. From the completion time of the embankment in the target area, the final settlement was predicted through the change in the degree of consolidation by the measurement period. Furthermore, the final settlement according to the change in degree of consolidation was compared and analyzed through finite element analysis and field measurement.