• Title/Summary/Keyword: The efficient of explosion

Search Result 88, Processing Time 0.029 seconds

Fluid Simulation Control for Effective VFX Underwater Explosion Effects (효과적인 VFX 수중 폭발효과 구현을 위한 유체 시뮬레이션 제어)

  • Hwang, Min Sik;Lee, Hyunseok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1606-1618
    • /
    • 2017
  • The explosion effect of computer graphics Visual Effects(VFX) used in films and animations is an important element that determines the completeness of the film, and its usage is getting extended. The realistic explosion effect of VFX should be made according to observations and analysis of various factors of actual explosion in real world. This experimental research would suggest the efficient production guideline for the technical characteristics of underwater explosion of VFX. For this research process, first, the comparison of actual explosion and VFX explosion effect, classification of actual explosion, and characteristics of underwater explosion effect will be addressed. Second, based on the literature reviews, the four steps of experimental production analysis tool will be derived. Third, the experimental research will be processed in along with technical factors four steps of the underwater explosion effect, (1)realistic creation and emission of fluid, (2)fluid expansion control by water pressure, (3)bubble effect, and (4)motion of bubble & dissipation of fluid. The effective method of fluid simulation production will be verified through experimental studies based on the characteristics of the actual explosion process. This experimental study suggested the VFX production technique is expected to be used as the basic data for related research field.

Assessment of Gas Release Dispersion and Explosion in Pipeline (파이프라인에서의 가스누출 확산과 폭발 영향평가)

  • Jung In-Gu;Yoo Sang-Bin;Lee Su-Kyung;Kim Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 1998
  • The risk assessments for gas leak in underground pipeline are conducted about the explosion accident of AHYUN-DONG underground service-base on December, 1994(Gaussian gas, LNG) and the accident of TAEGU subway on April 1995(Heavy gas LPG). We have calculated the total mass of gas release and have respected the efficient of explosions with report of the spot. The dispersion zones of LNG were calculated as large as fifteen times to those of LPG by ALOHA. The effects of thermal radiation from LNG explosion were assumed less than that from LPG by PHAST.

  • PDF

The diathermy scratch pad: A cheap and efficient tool for chemical and explosion-related burns

  • Wong, Allen Wei-Jiat;Hong, Qi En;Hui, Cheryl Li Yu;Chong, Si Jack
    • Archives of Plastic Surgery
    • /
    • v.46 no.1
    • /
    • pp.88-91
    • /
    • 2019
  • The burn center in our hospital is a national and regional (Southeast Asia) center. Of all admissions, 10% are related to blast explosions, and 8% due to chemical burns. In the acute burn management protocol of Singapore General Hospital, early surgical debridement is advocated for all acute partial-thickness burns. The aim of early surgical debridement is to remove all debris and unhealthy tissue, preventing wound infection and thereby expediting wound healing. In chemical burns, there can be stubborn eschars that are resistant to traditional debridement. We would like to present a novel technique using the diathermy scratch pad as a cheap and efficient tool for the dual purpose of surgical debridement and dermabrasion.

Case Study on the Analysis of Disaster Vulnerabilities (Focused on the Fire & Explosion in the N-Industrial Complex) (재난 취약성 분석에 관한 사례연구(N공단의 화재·폭발을 중심으로))

  • Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.94-100
    • /
    • 2021
  • In general, the industrial complex is a place where factories of various industries are concentrated. It is only as efficient as it is designed. However, the risks vary as there are various industries. These features are also associated with various types of disasters. The dangers of natural disasters such as a typhoon, flood, and earthquake, as well as fire and explosions, are also latent. Many of these risks can make stable production and business activities difficult, resulting in massive direct and indirect damage. In particular, decades after its establishment, the vulnerabilities increase even more as aging and small businesses are considered. In this sense, it is significant to assess the vulnerability of the industrial complex. Thus analysing fire and explosion hazards as stage 1 of the vulnerability evaluation for the major potential disasters for the industrial complex. First, fire vulnerabilities were analyzed quantitatively. It is displayed in blocks for each company. The assessment block status and the fire vulnerability rating status were conducted by applying the five-step criteria. Level A is the highest potential risk step and E is the lowest step. Level A was 11.8% in 20 blocks, level B was 22.5% in 38 blocks, level C was 25.4% in 43 blocks, level D was 26.0% in 44 blocks, and level E was 14.2% in 24 blocks. Levels A and B with high fire vulnerabilities were analyzed at 34.3%. Secondly, the vulnerability for an explosion was quantitatively analyzed. Explosive vulnerabilities were analyzed at 4.7% for level A with 8 blocks, 3.0% for level B with 5, 1.8% for level C with 3, 4.7% for level D with 8, and 85.8% for level E with 145. Levels A and B, which are highly vulnerable to explosions, were 7.7 %. Thirdly, the overall vulnerability can be assessed by adding disaster vulnerabilities to make future assessments. Moreover, it can also assist in efficient safety and disaster management by visually mapping quantified data. This will also be used for the integrated control center of the N-Industrial Complex, which is currently being installed.

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF

Risk Screening of a BTX Plant Using FEDI Method (화재폭발손실지수법을 이용한 BTX 공장의 위험선별)

  • Kim Yong-Ha;Kim In-Tae;Kim In-Won;Kim Ku-Hwoi;Yoon En-Sup
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.20-28
    • /
    • 2005
  • Major petrochemical companies in the USA and the EU map out the strategies step-by-step hazard evaluation for the efficient risk management. They adopted the risk screening methods, such as Dow fire & explosion index, as a preliminary phase to execute detailed evaluation such as QRA (Quantitative Risk Assessment). In this study, The FEDI (Fire & Explosion Damage Index), which a kind of risk screening method proposed by Khan and Abbasi, was applied to the BTX plant in Korea. We showed that the FEDI can be effectively used to classify the hazard potential by comparison of the result from the FEDI and the result from QRA. And we showed that the characteristics and the quantities of chemical are the factors which have a largest effect on fire and explosion by executing relative sensitivity analysis of the FEDI. In conclusion, if the FEDI was applied as a preliminary phase of HAZOP, more efficient hazard evaluation can be possible.

Load carrying capacity of CFRP retrofitted broken concrete arch

  • Wang, Peng;Jiang, Meirong;Chen, Hailong;Jin, Fengnian;Zhou, Jiannan;Zheng, Qing;Fan, Hualin
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.187-194
    • /
    • 2017
  • To reuse a broken plain concrete (PC) arch, a retrofitting method was proposed to ensure excellent structural performances, in which carbon fiber reinforced polymers (CFRPs) were applied to repair and strengthen the damaged PC arch through bonding and wrapping techniques. Experiments were carried out to reveal the deformation and the load carrying capacity of the retrofitted composite arch. Based on the experiments, repairing and strengthening effects of the CFRP retrofitted broken arch were revealed. Simplified analysing model was suggested to predict the peak load of the CFRP retrofitted broken arch. According to the research, it is confirmed that absolutely broken PC arch can be completely repaired and reinforced, and even behaves more excellent than the intact PC arch when bonded together and strengthened with CFRP sheets. Using CFRP bonding/wrapping technique a novel efficient composite PC arch structure can be constructed, the comparison between rebar reinforced concrete (RC) arch and composite PC arch reveals that CFRP reinforcements can replace the function of steel bars in concrete arch.

An Efficient Load Balancing Technique Considering Forms of Data Generation in SDNs (SDN 환경에서의 데이터 생성 형태를 고려한 효율적인 부하분산 기법)

  • Yoon, Jiyoung;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.247-254
    • /
    • 2020
  • The recent Internet environment is characterized by the explosion of certain types of data, as the data that people want is affected by certain issues. In this paper, we propose a load balancing technique that considers the data generation forms. The concept of this technique is to prioritize some type of data when it suddenly explodes. This is a technique to build an add-on middle box on a switch to monitor packets and give priority to a queue for load balancing. This technique worked when certain types of data exploded. SDN(Software Defined Networking) has the advantage of efficiently managing a number of network equipment. However, load balancing in the SDN environment has not been studied much. Applying the proposed load balancing technique in the SDN environment can save time and budget and easily implement our policies. When the proposed load balancing technique is applied to the SDN environment, it has been found that the techniques we want can be easily applied to the network systems, and that efficient data processing is possible when certain types of data explosion.

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.