• Title/Summary/Keyword: The Maximum Wind Speed

Search Result 593, Processing Time 0.041 seconds

Evaluate the Accuracy of Drone Photogrammetry Surveying Using Water Reference Points (수상기준점을 활용한 드론 사진측량의 정확도 평가)

  • Kim, Byungwoo;Hong, Soonheon;Oh, Jaehyun;Hwang, Daeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.445-449
    • /
    • 2017
  • Most studies using drone is confined utilization on the ground and regulation. The drone in the water is rarely used in hydrographic surveying because of the limit of flight time and image matching. This paper is the basic research for drone hydrographic photogrammetry. The accuracy of hydrographic photogrammetry, using buoys for water reference point, was evaluated. The accuracy is influenced by the accuracy of the water reference points like the photogrammetry. The position of water reference points set up on water, keep on changing due to various environmental factors such as wind speed and water velocity. The position continuously changed of the water reference points were measured 3 times using Total Station and VRS. Experiments were conducted at two reservoirs in Gimhae City, and the accuracy of the manual image matching using the water reference points is 40 cm and 80 cm. Allowable accuracy of the ocean boundary survey is ${\pm}2m$, the results of this study are fully available. The maximum position error of the water reference point for ensuring accuracy within ${\pm}2m$ is 1.8 m.

Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US (다양한 기후요소와 지표에 대한 CMIP5 GCMs 모델 성능 평가 -미국 남동부 지역을 대상으로-)

  • Hwang, Syewoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1039-1050
    • /
    • 2014
  • The goal of this study is to demonstrate the diversity of model performance for various climatic elements and indicators. We evaluated the skills of the most advanced 17 General Circulation Models (GCMs) i.e., CMIP5 (Climate Model Inter-comparison project, phase 5) climate models in reproducing retrospective climatology from 1950 to 2000 over the Southeast US for the key climatic elements important in the hydrological and agricultural perspectives (i.e., precipitation, maximum and minimum temperature, and wind speed). The biases of raw CMIP5 GCMs were estimated for 16 different climatic indicators that imply mean climatology, temporal variability, extreme frequency, etc. using a grid-based observational dataset as reference. Based on the error (RMSE) and correlation (R) of GCM outputs, the error-based GCM ranks were assigned on average over the indicators. Overall, the GCMs showed much better accuracy in representing mean climatology of temperature comparing to other elements whereas few GCM showed acceptable skills for precipitation. It was also found that the model skills and ranks would be substantially different by the climatic elements, error statistics applied for evaluation, and indicators as well. This study presents significance of GCM uncertainty and the needs of considering rational strategies for climate model evaluation and selection.

The Cooling Effect of Fog Cooling System as Affected by Air Exchange Rate in Natural Ventilation Greenhouse (자연환기 온실의 환기회수에 따른 포그냉방시스템의 냉방효과)

  • 김문기;김기성;권혁진
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The cooling effect of a fog cooling system has a close relationship to air flow and relative humidity in the greenhouse. From the VETH chart for cooling design, a cooling efficiency can be improved by means of increasing the air exchange rate and the amount of sprayed water. In the no shading experimental greenhouse by time control, when average air exchange rate was 0.77 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature of the greenhouse was 31$^{\circ}C$ that was almost close to outside temperature and cooling efficiency was 82%. When average air exchange rate was close to temperature of the greenhouse that was no cooling and 70% shading greenhouse environment. When average air exchange rate was 2.59times.min$^{-1}$ , spray water amount was 2,009g and shading rate was 70%, inside relative humidity of the greenhouse was increased was 2,009 g and shading rate was 70%, inside relative humidity of the greenhouse was increased, but temperature was not decreased. When average air exchange rate was 2.33 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature was 31.4 and at that time maximum wind speed at the air inlet of greenhouse was 1.9m.s$^{-1}$ . Since time controller sprayed amount of constant water at a given interval, some of sprayed water remained not to be evaporated, which increased relative humidity and decreased cooling efficiency. Because the shading screen prevented air flow in the greenhouse, it also caused the evaporation efficiency to be decreased. In order to increase cooling efficiency, it was necessary to study on controling by relative humidity and air circulation in the greenhouse.

  • PDF

Prediction of golf scores on the PGA tour using statistical models (PGA 투어의 골프 스코어 예측 및 분석)

  • Lim, Jungeun;Lim, Youngin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • This study predicts the average scores of top 150 PGA golf players on 132 PGA Tour tournaments (2013-2015) using data mining techniques and statistical analysis. This study also aims to predict the Top 10 and Top 25 best players in 4 different playoffs. Linear and nonlinear regression methods were used to predict average scores. Stepwise regression, all best subset, LASSO, ridge regression and principal component regression were used for the linear regression method. Tree, bagging, gradient boosting, neural network, random forests and KNN were used for nonlinear regression method. We found that the average score increases as fairway firmness or green height or average maximum wind speed increases. We also found that the average score decreases as the number of one-putts or scrambling variable or longest driving distance increases. All 11 different models have low prediction error when predicting the average scores of PGA Tournaments in 2015 which is not included in the training set. However, the performances of Bagging and Random Forest models are the best among all models and these two models have the highest prediction accuracy when predicting the Top 10 and Top 25 best players in 4 different playoffs.

The Role of Jungrangchun for a Wintering Waterbirds in Hangang (한강에서 월동하는 수금류의 서식지로서 중랑천의 중요성)

  • Kim, Mi-Ran;Lee, Yun-Kyung;Ahn, Ji-Young;Kim, In-Hong;Yoo, Jeong-Chil
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • Urban stream is an important place supporting urban ecosystem. This study was carried out to clarify the role of Jungrangchun for wintering waterbirds in Seoul. We monitored the fluctuation of waterbirds population using our census data (1997/98 winter) and pervious census data (the Ministry of Environment and National Institute of Environmental Research $1999{\sim}2004$). Wintering behaviours of common teals (Anas crecca) were also observed to understand the habitat use of waterbirds in this area. As a result of this, Jungrangchun was an important place to support $3,004\sim8,237$ wintering birds, mainly dabbling ducks and diving ducks. The population of diving ducks showed high annual fluctuation whilst the population of dabbling ducks regularly used this area every year The maximum number of waterbirds foraged and rested in late January and late February. In daily use, the number of waterbirds increased on afternoon and rapidly increased after sunset. It is assumed that waterbirds used this area not only as a nocturnal feeding site but also daytime feeding site. Thus, this result suggest that Jungrangchun is important for not only the daily use but also the nocturnal use of wintering waterbirds. The number of diving ducks was increased with low temperature and high wind speed. Therefore, this area was also a shelter of diving ducks on chilly and windy day.

Analysis of Building Vulnerabilities to Typhoon Disaster Based on Damage Loss Data (태풍 재해에 대한 건물 취약성의 피해손실 데이터 기반 분석)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Son, Ki-Young;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.529-538
    • /
    • 2019
  • Typhoons can cause significant financial damage worldwide. For this reason, states, local governments and insurance companies attempt to quantify and mitigate the financial risks related to these natural disasters by developing a typhoon risk assessment model. As such, the importance of typhoon risk assessment models is increasing, and it is also important to reflect local vulnerabilities to enable sophisticated assessments. Although a practical study of economic losses associated with natural disasters has identified essential risk indicators, comprehensive studies covering the correlation between vulnerability and economic loss are still needed. The purpose of this study is to identify typhoon damage indicators and to develop evaluation indicators for typhoon damage prediction functions, utilizing the loses from Typhoon Maemi as data. This study analyzes actual loss records of Typhoon Maemi provided by local insurance companies to prepare for a scenario of maximum losses. To create a vulnerability function, the authors used the wind speed and distance from the coast and the total value of property, construction type, floors, and underground floor indicators. The results and metrics of this study provide practical guidelines for government agencies and insurance companies in developing vulnerability functions that reflect the actual financial losses and regional vulnerabilities of buildings.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data (기상예보자료 기반의 농업용저수지 저수율 전망을 위한 나이브 베이즈 분류 및 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.839-852
    • /
    • 2018
  • The purpose of this study is to predict monthly agricultural reservoir storage by developing weather data-based Multiple Linear Regression Model (MLRM) with precipitation, maximum temperature, minimum temperature, average temperature, and average wind speed. Using Naïve-Bayes classification, total 1,559 nationwide reservoirs were classified into 30 clusters based on geomorphological specification (effective storage volume, irrigation area, watershed area, latitude, longitude and frequency of drought). For each cluster, the monthly MLRM was derived using 13 years (2002~2014) meteorological data by KMA (Korea Meteorological Administration) and reservoir storage rate data by KRC (Korea Rural Community). The MLRM for reservoir storage rate showed the determination coefficient ($R^2$) of 0.76, Nash-Sutcliffe efficiency (NSE) of 0.73, and root mean square error (RMSE) of 8.33% respectively. The MLRM was evaluated for 2 years (2015~2016) using 3 months weather forecast data of GloSea5 (GS5) by KMA. The Reservoir Drought Index (RDI) that was represented by present and normal year reservoir storage rate showed that the ROC (Receiver Operating Characteristics) average hit rate was 0.80 using observed data and 0.73 using GS5 data in the MLRM. Using the results of this study, future reservoir storage rates can be predicted and used as decision-making data on stable future agricultural water supply.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.