• Title/Summary/Keyword: The Gamma Waves

Search Result 64, Processing Time 0.028 seconds

GRAVITATIONAL WAVES AND ASTRONOMY (중력파와 천문학)

  • Lee, Hyung-Mok;Lee, Chang-Hwan;Kang, Gung-Won;Oh, John-J.;Kim, Chung-Lee;Oh, Sang-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

Comparison of Electroencephalographic Changes during Mental Practice and Action Observation in Subjects with Forward Head Posture (상상연습과 동작관찰 동안 전방머리자세의 대뇌겉질 활성도 비교)

  • Yang, Hoesong;Kang, Hyojeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the difference in motor cortical excitability during mental practice and action observation in subjects with forward head posture. Methods : This study was performed in two groups, a forward head posture group (n=17) and a normal posture group (n=17). Electroencephalography (EEG) was conducted to investigate cerebral cortex activity, and six electrodes were attached to Fp1, Fp2, C1, C2, C3, and C4 to measure the relative alpha power, relative beta power, relative gamma power, and mu rhythms. The subjects were requested to perform the four different conditions, which were eye opening, eye closing, mental practice, and action observation for 300 seconds. Results : The results showed that the relative alpha waves showed a significant difference between the normal and forward head posture groups in the C1, C2, C3, and C4 regions with the eyes open (p<.05). The relative beta waves also showed a significant difference between the two groups in the Fp1 and Fp2 regions during action observation (p<.05). The relative gamma waves were significantly different between the normal and forward head posture groups in the Fp1 and Fp2 regions during action observation (p<.05) in C1, C2, and C3 with eyes closed (p<.05) and in C1, C2, C3, and C4 with eyes open (p<.05). Conclusion : The results of this study showed that EEG change in the forward head posture group was different from that in the normal control group in action observation rather than in mental practice. Therefore, we are expected to provide a neurophysiological basis for applying action observation to motor skill learning during exercise for correcting forward head posture.

A Research on the Characteristics of EEG Information on Drive Behavior (운전거동에 따른 운전자 뇌파특성에 관한 연구)

  • Oh, Dong-Hun;Namgung, Moon;Park, Hee-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.23-29
    • /
    • 2015
  • In this study, human is the subject of driving a car, the actual EEG is a biological information in a number of reactions that are displayed while driving the vehicle by using a measuring device, occurs during travel of the road EEG to be collected, number of experiments the collected material on the basis of changes associated with running time, extracts the factors such as changes due to road geometry, and analysis was performed. The required changes in the EEG occurring during traveling experiment analysis alpha (${\alpha}$) waves, beta (${\beta}$) wave, after the primary extraction in the form of gamma (${\gamma}$) faction, the brain wave frequency of the entire period of the experiment change rate extracts, to calculate the change in frequency in response to EEG characteristics by applying the regression model to observe a learning effect in response to an increase in the number of experiments, as a result, depending on the number of experiments, EEG changes due to individual differences. The show, by repeatedly driving a section like this, it was possible to verify that comfortably travels driver accustomed in accordance with the stored road geometry and signal, safety facilities.

Gamma-Ray and Neutrino Emissions from Starburst Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2020
  • Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are <~10-3 of the atmospheric neutrino flux in the energy range of Eneutrino <~100 GeV and <~10-1 of the IceCube point source sensitivity in the energy range of Eneutrino >~60 TeV.

  • PDF

Statistical Characteristics of Deepwater Waves along the Korean Coast (한국 연안 심해파의 통계적 특성)

  • Suh, Kyung-Duck;Kwon, Hyuk-Dong;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.342-354
    • /
    • 2008
  • Some statistical characteristics of deepwater waves along the Korean coast have been investigated using various sources of wave measurement and hindcasting data. For very large waves comparable to design waves, it is recommended to use the average value of the empirical formulas proposed by Shore Protection Manual in 1977 and by Goda in 2003 for the relation between significant wave height and period. The standard deviation of significant wave periods non-dimensionalized with respect to the mean value for a certain significant wave height varies between 0.04 and 0.21 with a typical value of 0.1 depending upon different regions and different ranges of significant wave heights. The mean and standard deviation of the principal deepwater wave direction are presented at the 106 coastal grid points along the Korean coast. For relatively large waves, the probability density function of the directional spreading parameter $s_{max}$ is expressed as a lognormal distribution. The most suitable frequency spectrum in the Korean coast is the TMA spectrum. The probability density function of the peak enhancement factor $\gamma$ is also expressed as a lognormal distribution, with its mean value of 2.94, which is close to the value in the North Sea.

The Generation of Westerly Waves by Sobaek Mountains (소백산맥에 의한 서풍 파동 발생)

  • Kim, Jin wook;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.24-34
    • /
    • 2017
  • The westerly waves generation is described in the advanced earth science textbook used at high school as follows: as westerly wind approaches and blows over large mountains, the air flow shows wave motions in downwind side, which can be explained by the conservation of potential vorticity. However, there has been no case study showing the phenomena of the mesoscale westerly waves with observational data in the area of small mountains in Korea. And thus the wind speed and time persistency of westerly winds along with the width and length of mountains have never been studied to explain the generation of the westerly waves. As a first step, we assured the westerly waves generated in the downwind side of Sobaek mountains based on surface station wind data nearby. Furthermore, the critical or minimum wind velocity of the westerly wind over Sobaek mountains to generate the downwind wave were derived and calcuated tobe about $0.6m\;s^{-1}$ for Sobaek mountains, which means that the westerly waves could be generated in most cases of westerly blowing over the mountains. Using surface station data and 4-dimensional assimilation data of RDAPS (Regional Data Assimilation and Prediction System) provided by Korea Meteorological Agency, we also analyzed cases of westerly waves occurrence and life cycle in the downwind side of Sobaek mountains for a year of 2014. The westerly waves occurred in meso-${\beta}$ or -${\gamma}$ scales. The westerly waves generated by the mountains disappeared gradually with wind speed decreasing. The occurrence frequency of the vorticity with meso-${\beta}$ scale got to be higher when the stronger westerly wind blew. When we extended the spatial range of the analysis, phenomena of westerly waves were also observed in the downwind side of Yensan mountains in Northeastern China. Our current work will be a study material to help students understand the atmospheric phenomena perturbed by mountains.

Strong Accretion Shock Waves in Cluster Outskirts and Possibility of Cosmic-Ray Population Inversion

  • Hong, Sungwook E.;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We analyzed the properties of shock waves in galaxy clusters, by using the data of simulations for the large-scale structure of the universe with the spatial resolution of up to 25 kpc/h. In a substantial fraction of clusters, we found that strong shocks with Mach number of several or larger exist in outskirts within the virial radius. They are produced by the accretion of warm gas flowing from filaments to clusters, and generate large cosmic-ray fluxes. The cosmic rays advect into cluster cores, but may temporally induce the population inversion, that is, larger population at larger radius, suggested by recent radio and ${\gamma}$-ray observations.

  • PDF

Analysis of Electromagnetic Wave Interference Environment to Industrial Machinery (산업설비의 전자파 장해환경 분석)

  • Hong, Yong-Gyu;Kim, Tae-Hyun;Kim, Duck-Keun;Lim, Jang-Sub;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1835-1837
    • /
    • 2001
  • The interference of electromagnetic waves in factory is increasing according with development of industrial society and many use of electrical machinery. Electromagnetic wave is defined as the electrical and magnetic field formed by electrical and electronic equipment used in daily lives, which indiscriminatingly affects the human health and operation of machinery. The electromagnetic spectrum ranges from the shorter wavelengths(including gamma and x-rays) to the longer wavelengths(including microwaves and broadcast radio waves). Radiation that is not absorbed or scattered in the atmosphere can reach and affect on the operation of machine. In this study, electromagnetic wave that is interfered to the machine and human is detected in factory, and decrease method of electromagnetic wave interference is studied.

  • PDF

Gravitational-Wave Astronomy (중력파 천문학)

  • Kim, Chunglee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.3-31.3
    • /
    • 2016
  • Exploring a universe with gravitational waves (GWs) was only theoretical expectation for long time. In September 2015, the Laser Interferometer GW Observatory (LIGO) first detected GWs emitted from the collision of two stellar-mass black holes in cosmological distance (1.3 billion light years) on Earth. This confirms the existence of black-hole binary mergers, and further, opens a new field of GW astronomy. We begin our discussion with a list of important GW sources that can be detectable on Earth by large-scale laser interferometers such as LIGO. Focusing on compact objects such as neutron stars and black holes, we then discuss possible research in the context of GW astronomy. By coordinating with existing observatories, searching for electromagnetic waves or particles from astronomical objects, around the world, multi-messenger astronomy for the universe's most cataclysmic phenomena (e.g. gamma-ray bursts) will be available in the near future.

  • PDF

Effects of Cranial Electrotherapy Stimulation on Electrocephalogram

  • Lee, Jeongwoo;Lee, Hyejein;Park, Woongsik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1687-1694
    • /
    • 2019
  • Background: Although cranial electrotherapy stimulation (CES) is reported to have positive effects on mental functions such as depression and sleep improvement, detailed studies regarding awakening, attention and concentration among brain waves reflecting brain activity are lacking. Objective: To examine the effects of cranial electrotherapy stimulation (CES) on various electroencephalograms (EEGs) reflecting brain activities. Design: Randomized controlled clinical trial (single blind) Methods: This study selected 30 healthy adult women in their 20s who volunteered for this experiment. A total of 30 subjects were randomly assigned to three groups (Sham group, 0.5 Hz CES group, and 100 Hz CES group). EEGs were measured before and after the single CES, and the results were compared and analyzed. Results: The relative theta, alpha, and gamma waves indicated no significant differences in the interaction effects between time and group. The relative fast alpha wave only showed significant differences in the interaction effects between time and group in P4. The relative slow beta wave only indicated statistically significant differences in the interaction effects between time and group in T3 and T4. The relative mid and fast beta waves showed statistically significant differences in the interaction effects between time and group in all areas. Conclusions: These results suggest that a CES of 0.5 Hz awakens consciousness and has a positive influence on brain activity, while a CES of 100 Hz has a positive influence on thinking activity accompanying mental load during concentrating on one subject.