• Title/Summary/Keyword: Thapsigargin

Search Result 94, Processing Time 0.021 seconds

Induction of Pacemaker Currents by DA-9701, a Prokinetic Agent, in Interstitial Cells of Cajal from Murine Small Intestine

  • Choi, Seok;Choi, Jeong June;Jun, Jae Yeoul;Koh, Jae Woong;Kim, Sang Hun;Kim, Dong Hee;Pyo, Myoung-Yun;Choi, Sangzin;Son, Jin Pub;Lee, Inki;Son, Miwon;Jin, Mirim
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The interstitial cells of Cajal (ICC) are pacemaking cells required for gastrointestinal motility. The possibility of whether DA-9701, a novel prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber, modulates pacemaker activities in the ICC was tested using the whole cell patch clamp technique. DA-9701 produced membrane depolarization and increased tonic inward pacemaker currents in the voltage-clamp mode. The application of flufenamic acid, a non-selective cation channel blocker, but not niflumic acid, abolished the generation of pacemaker currents induced by DA-9701. Pretreatment with a $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, abolished the generation of pacemaker currents. In addition, the tonic inward currents were inhibited by U-73122, an active phospholipase C inhibitor, but not by $GDP-{\beta}-S$, which permanently binds G-binding proteins. Furthermore, the protein kinase C inhibitors, chelerythrine and calphostin C, did not block the DA-9701-induced pacemaker currents. These results suggest that DA-9701 might affect gastrointestinal motility by the modulation of pacemaker activity in the ICC, and the activation is associated with the non-selective cationic channels via external $Ca^{2+}$ influx, phospholipase C activation, and $Ca^{2+}$ release from internal storage in a G protein-independent and protein kinase C-independent manner.

A Single Natural Variation Determines Cytosolic Ca2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas

  • Du, Eun Jo;Kang, KyeongJin
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.572-580
    • /
    • 2020
  • Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.

Olibanum-induced Apoptosis Signaling in Human Cervical Carcinoma HeLa Cells (자궁경부암세포(子宮經部癌細胞)(HeLa cell)에서 유향(乳香) 세포고사(細胞枯死) 기전(機轉) 연구(硏究))

  • Park, Kyung-Mi;Kong, Bok-Cheul;Lee, Su-Jung;Choe, Chang-Min;Yoo, Sim-Keun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.92-106
    • /
    • 2006
  • Purpose : To address the ability of Olibanum to induce cell death, we investigated the effect of olibanum on cell apoptosis. Twenty-four hours later, apoptosis occurred following olibanum exposure in a dose-dependent manner. Methods : We culture HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : The treatment of BAPTA-AM regulated olibanum-induced apoptosis in HeLa human cervical carcinoma cells. The 24 hr-earlier -thapsigargin-pretreated cell showed the resistance against olibanum-induced apoptosis and the Ru360-mitochondrial uniporter-inhibited olibanum-induced apoptosis, too. It means that olibanum leads to the accumulation of calcium and the resultant apoptosis in HeLa cells. Immunoblotting data also shows that the expression of GRP78, ER stress marker protein, was induced by the olibanum. Bcl-2, anti-apototic protein, was decreased and that the expression of Bax, pro-apoptotic protein, was increased by the addition of olibanum. Interestingly, the olibanum increased the activity of caspase-8 as well as calpain cysteine pretense in HeLa cervical carcinoma cells. Calpain inhibitor-calpastatin as well as caspase-8C/A expression abrogated olibanum-induced apoptosis in the carcinoma cells. The inhibition of caspase-8 regulated olibanum-induced calpain activation but the inhibition of calpain did not have any effect on the caspase-8 activation in HeLa human cervical carcinoma cells. Conclusion : We conclude that olibanum induces the accumulation of calcium and the resultant apoptosis in which caspase-8 and calpain are involved.

  • PDF

Forward-Mode $Na^+-Ca^{2+}$ Exchange during Depolarization in the Rat Ventricular Myocytes with High EGTA

  • Kim, Eun-Gi;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.487-494
    • /
    • 2001
  • During depolarization, extrusion of $Ca^{2+}$ from sarcoplasmic reticulum through forward-mode $Na^+-Ca^{2+}$ exchange was studied in the rat ventricular myocytes patch-clamped in whole-cell configuration. In order to confine the $Ca^{2+}$ responses in a micro-domain by limiting the $Ca^{2+}$ diffusion time, rat ventricular myocytes were dialyzed with high (14 mM) EGTA. $K^+$ current was suppressed by substituting KCl with 105 mM CsCl and 20 mM TEA in the pipette filling solution and by omitting KCl in the external Tyrode solution. $Cl^-$ current was suppressed by adding 0.1 mM DIDS in the external Tyrode solution. During stimulation roughly mimicking action potential, the initial outward current was converted into inward current, $47{\pm}1%$ of which was suppressed by 0.1 mM $CdCl_2.$ 10 mM caffeine increased the remaining inward current after $CdCl_2$ in a cAMP-dependent manner. This caffeine-induced inward current was blocked by $1\;{\mu}M$ ryanodine, $10\;{\mu}M$ thapsigargin, 5 mM $NiCl_2,$ or by $Na^+\;and\;Ca^{2+}$ omission, but not by $0.1\;{\mu}M$ isoproterenol. The $I{\sim}V$ relationship of the caffeine-induced current elicited inward current from -45 mV to +3 mV with the peak at -25 mV. Taken together, it is concluded that, during activation of the rat ventricular myocyte, forward-mode $Na^+-Ca^{2+}$ exchange extrudes a fraction of $Ca^{2+}$ released from sarcoplasmic reticulum mainly by voltage-sensitive release mechanism in a micro-domain in the t-tubule, which is functionally separable from global $Ca^{2+}{_i}$ by EGTA.

  • PDF

Relationship Between Histamine Release and Ca$^{2+}$ Mobilizaton in RBL 2H3 Mast Cells (RBL 2H3 비만세포에서 히스타민 유리와 칼슘과의 관계)

  • Park, Sung-Hun;Kim, Soo-Jeong;Kim, Jung-Min;Park, Ju-Hyun;Choi, Bang-Shil;Lee, Ji-Yun;Choi, Mi-Yeong;Sim, Sang-Soo
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • To investigate the relation between extracellular Ca$^{2+}$ and histamine release, we observed agonist-induced histamine release from RBL 2H3 mast cells in the presence or absence of extracellular Ca$^{2+}$ concentration. Histamine release induced by melittin and thapsigargin were greater in the presence of extracellular Ca$^{2+}$ than in the absence of extracellular Ca$^{2+}$. Econazole-induced histamine release had nothing to do with extracellular Ca$^{2+}$, whereas arachidonic acid-induced histamine release increased in the absence of extracellular Ca$^{2+}$. Calmodulin antagonists did not affect melittin-induced histamine release but they may potentiate arachidonic acid-induced histamine release. These data suggest that arachidonic acid-induced histamine release may be mediated via Ca$^{2+}$-independent pathway and may be potentiated by the block of Ca$^{2+}$-dependent pathway.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Tetrachloroauric Acid Depresses the Activation Processes of Phagocytic Cells

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.377-384
    • /
    • 1998
  • Gold compounds depress phagocytic cell responses, including chemotaxis, and respiratory burst. However, the effects of gold compounds on the function of phagocytic cells are variable according to the preparation of medicine. In this study, effect of tetrachloroauric acid on activated neutrophil responses, including respiratory burst, lysosomal enzyme release and change of intracellular $Ca^{2+}$ level and on the synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by macrophages was studied. This study further examines how gold compounds affect the activation processes. The respiratory burst stimulated by complement C5a, degraded IgG and PMA in neutrophils was inhibited by tetrachloroauric acid. In contrast to C5a and degraded IgG, PMA-stimulated superoxide production was weakly inhibited by tetrachloroauric acid. Staurosporine, genistein, EGTA and verapamil inhibited superoxide and $H_2O_2$ production caused by C5a and degraded IgG. PMA-stimulated superoxide production was inhibited by staurosporine but was not affected by genistein. Tetrachloroauric acid, genistein, EGTA and verapamil inhibited the release of acid phosphatase and myeloperoxidase, while the effect of staurosporine was not detected. The synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by $interleukin-1{\beta}$ in macrophages was inhibited by tetrachloroauric acid. Preincubation with tetrachloroauric acid, genistein, EGTA and verapamil, the elevation of [$Ca^{2+}_i$] evoked by C5a was inhibited. Store-regulated $Ca^{2+}$ entry in thapsigargin-pretreated neutrophils was decreased by the addition of tetrachloroauric acid and genistein. The effect of staurosporine on intracellular $Ca^{2+}$ mobilization was not observed. In conclusion, tetrachloroauric acid may suppress neutrophil responses through its inhibitory action on elevation of intracellular $Ca^{2+}$ level and protein kinase C. It might exhibit an inhibitory effect on the action of protein tyrosine kinase. Tetrachloroauric acid depresses cytokine production by macrophages.

  • PDF

Intracellular $Ca^{2+}$ Mobilization and Beta-hexosaminidase Release Are Not Influenced by 60 Hz-electromagnetic Fields (EMF) in RBL 2H3 Cells

  • Hwang, Yeon-Hee;Song, Ho-Sun;Kim, Hee-Rae;Ko, Myoung-Soo;Jeong, Jae-Min;Kim, Yong-Ho;Ryu, Jeong-Soo;Sohn, Uy-Dong;Gimm, Yoon-Myoung;Myung, Sung-Ho;Sim, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.313-317
    • /
    • 2011
  • The effects of extremely low frequency electromagnetic fields (EMF) on intracellular $Ca^{2+}$ mobilization and cellular function in RBL 2H3 cells were investigated. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not produce any cytotoxic effects in RBL 2H3 cells. Melittin, ionomycin and thapsigargin each dose-dependently increased the intracellular $Ca^{2+}$ concentration. The increase of intracellular $Ca^{2+}$ induced by these three agents was not affected by exposure to EMF (60 Hz, 1 mT) for 4 or 16 h in RBL 2H3 cells. To investigate the effect of EMF on exocytosis, we measured beta-hexosaminidase release in RBL 2H3 cells. Basal release of beta-hexosaminidase was $12.3{\pm}2.3%$ in RBL 2H3 cells. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not affect the basal or $1{\mu}m$ melittin-induced beta-hexosaminidase release in RBL 2H3 cells. This study suggests that exposure to EMF (60 Hz, 0.1 or 1 mT), which is the limit of occupational exposure, has no influence on intracellular $Ca^{2+}$ mobilization and cellular function in RBL 2H3 cells.

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.

Alteration of Cytosolic Ca$^{2+}$ Signal by Cryopreservation in Pig Sperm (동결 보존에 의한 돼지 정자 세포질 칼슘 신호의 변화)

  • Lee, Sun-Woo;Li, Yu-Hua;Kim, Joon-Chul;Myung, Pyung-Keun;Park, Chang-Sik;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Although mammalian sperms are cryopreserved for in vitro fertilization a process of cryopreservation decreases the fertility. Acrosome reaction requires depolarization-induced Ca$^{2+}$ influx and Ca$^{2+}$ releases from the Ca$^{2+}$ stores. To examine whether the cellular Ca$^{2+}$ mobilization is altered by a sperm cryopreservation we compared cytosolic Ca$^{2+}$ signals between fresh and cryopreserved pig sperms using confocal Ca$^{2+}$ imaging. The magnitudes of depolarization induced Ca$^{2+}$ increases were significantly smaller in cryopreserved sperms. Exposures to 10 mM caffeine or 5 ${\mu}$M thapsigargin elicited less Ca$^{2+}$ increases in the cryopreserved sperms compared to fresh sperms. In addition, progesterone-trig-gered Ca$^{2+}$ rises, that are thought to enhance acrosome reaction, were completely abolished in the cryopreserved sperms. These results suggest that storage and(/or) release of Ca$^{2+}$ from the intracellular Ca$^{2+}$ stores in pig sperms are significantly impaired by the process of cryopreservation.