• Title/Summary/Keyword: Texture property

Search Result 387, Processing Time 0.022 seconds

Quality Characteristics of Sponge Cake added with Pine Leaf Powder

  • Shin, Gil-Man
    • Culinary science and hospitality research
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2016
  • This study investigated the quality characteristics of sponge cake added with pine leaf powder. The pine leaf powder sponge cake was prepared with different ration of pine leaf powder(0, 10, 20, 30, 40%). The specific gravity, baking loss rate and cake weight increased significantly with increasing the levels of pine leaf powder. In terms of color, lightness and yellowness increased with increasing levels of pine leaf powder. The sponge cake added with ratio of 40% pine leaf powder appeared to be the highest. In terms of textual property evaluation, sponge cake were increased by the level of pine leaf powder. The substance's level of springiness, and cohesiveness decreased by increasing of the level of pine leaf powder. In sensory evaluation, 10% pine leaf e sponge cake was better on taste, overall acceptability, and flavor. The results showed that sponge cake quality with 10% pine leaf powder was considered the best.

Changes of Textural and Organoleptic Properties as Influenced by Preparation Conditions of Buckwheat Mook (메밀묵의 제조조건에 따른 텍스쳐 및 관능적 특성 변화)

  • 정용진;이명희;서지형;이기동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.8 no.2
    • /
    • pp.155-161
    • /
    • 1998
  • Response surface methodology (RSM) was used for optimizing preparation conditions and monitoring the quality of buckwheat mook prepared using buckwheat starch. The textures(hardness, adhesiveness, cohesiveness and gumminess) of buckwheat mook were decreased in inverse proportion to the increase of water content. the L and b values of Hunter color parameters in buckwheat mook were increased in proportion to the increase of water content. However, The a value of Hunter color parameters of buckwheat mook were decreased in inverse proportion to the increase of water content. Organoleptic properties(color, form, taste and mouth-feel) of buckwheat mook showed a maximum score in 700ml(water content), 14min(gelatinization time)

  • PDF

Image Coding by Region Classification and Wavelet Transform (영역분류와 웨이브렛 변환에 의한 영상 부호화)

  • 윤국진;박정호;최재호;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.113-116
    • /
    • 2000
  • In this paper, we present new scheme for image coding which efficiently use the relationship between the properties of spatial image and its wavelet transform. Firstly an original image is decomposed into several layers by the wavelet transform, and simultaneously decomposed into 2$\^$n/ ${\times}$ 2$\^$n/ blocks. Each block is classified into 3 regions according to their property, i.e., low activity region(LAR), midrange activity region(MAR), high activity region(HAR). Secondly we are applied texture modeling technique to LAR, MAR and HAR are encoded by Stack-Run coding technique. Finally our scheme Is superior to the Zerotree method in both reconstructed image Quality and transmitted bit rates.

  • PDF

Effects of Electron Beam Heating(EBH) on the Properties of ion Plated Ti(C, N) Films (이온도금된 Ti(C, N)피막의 물성에 대한 전자빔가열 효과)

  • 김치명;고경현;안재환;배종수;정형식
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.267-275
    • /
    • 1995
  • Electron beam can provide convenient way to heat the substrate during Hollow Cathode Discharge (HCD) ion plating of Ti(C, N)films. Densification of columnar structrue is enhanced by longer duration of electron beam heating(EBH). While strong(111) texture is identified always to be formed, the amount of (200) oriented grains which coherently interfaced with carbide particles of the substrate increased with heating(EBH). In turns, these crystallogaphical change lead to the increase of micro hardness and adhesion of coating. Adhesion of Ti(C, N) films increased more dramatically in case of ASP30 substrate of which carbide particles dispersed more finely than M42. Therefore, it could be concluded that both the density of film and interfacial structure can affect the adhesion property. Overheating of substrate could be resulted in low adhesion resistance due to high residual stress developed in the film.

  • PDF

Feature Extraction Using Convolutional Neural Networks for Random Translation (랜덤 변환에 대한 컨볼루션 뉴럴 네트워크를 이용한 특징 추출)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.515-521
    • /
    • 2020
  • Deep learning methods have been effectively used to provide great improvement in various research fields such as machine learning, image processing and computer vision. One of the most frequently used deep learning methods in image processing is the convolutional neural networks. Compared to the traditional artificial neural networks, convolutional neural networks do not use the predefined kernels, but instead they learn data specific kernels. This property makes them to be used as feature extractors as well. In this study, we compared the quality of CNN features for traditional texture feature extraction methods. Experimental results demonstrate the superiority of the CNN features. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented.

비대칭 노즐을 이용한 쌍롤 박판주조법으로 제조한 Al-Mg 합금의 Mg 조성에 따른 기계적 특성 평가

  • Kim, Hong-Gyu;Cheon, Bu-Hyeon;Kim, Hyeong-Uk;Lee, Jae-Cheol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • 최근 자동차용 강판을 대체하기 위한 재료로서 알루미늄 합금에 대한 관심이 높아지고 있다. 알루미늄 합금은 철강 재료에 비해 비강도가 높으며 재활용이 용이하고 내식성이 뛰어난 활용 가치가 높은 소재이다. 하지만 기존의 강판을 알루미늄 합금으로 대체하기 위해서는 높은 경제성, 강도 및 성형성이 요구되고 있는 현실이다. 따라서 고강도 알루미늄 합금 판재를 경제적으로 제조하기 위한 제조 공정기술 및 후가공 기술의 개발이 필요하다. 본 연구에서는 기존의 쌍롤 박판주조법에 비대칭 노즐을 이용하여 높은 주조 속도를 유지하면서도 중심 편석 및 열간 균열을 완화시켜 첨가되는 용질 원소의 양을 증가시켰다. 제조한 다양한 조성을 가진 알루미늄 합금 판재의 후속 압연성, 기계적 특성 및 성형성을 평가하기 위하여 미세조직 및 집합조직을 분석하였으며 이에 따른 실용화 가능성을 평가하였다.

  • PDF

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.