• 제목/요약/키워드: Textile Material

Search Result 851, Processing Time 0.023 seconds

Reduction Cleaning and Thermomigration Effects on Micro Polyester SUEDE (극세 폴리에스테르 스웨드의 환원세정과 열이행의 영향)

  • Choi, Kyung-Yeon;Han, Sam-Sook;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.12-21
    • /
    • 2009
  • The dyeing property of direct-spinning type and seaisland type 0.2D micro polyester nonwoven fabrics was characterized by three disperse dyes (Dorosperse Red KFFB, Blue KGBR, Yellow KRL) at $120^{\circ}C$ and $130^{\circ}C$. Before and after reduction cleaning, dyeing fastness was evaluated and the thermomigaration after heat setting at $180^{\circ}C$ for 60 min were also evaluated. Direct-spinning type fabric showed better dyeing property, wash fastness, and light fastness, but worse rub fastness than seaisland type fabric. The dyeing property and fastness of direct-spinning type fabric increased at higher dyeing temperature, whereas seaisland type fabric exhibited lower dyeing fastness and the increase of thermomigration at higher dyeing temperature. Non-fixed dye in fiber surface was removed by reduction cleaning process, then dyeing fastness was improved and thermomigration decreased. The higher dye uptake of direct-spinning type non-woven fabric caused the increase of dye molecule migration from fiber internal to fiber surface, so this fabric showed larger thermomigration than seaisland type non-woven fabric.

Implementation of 2.5D Mapping System for Fashion Design (패션디자인을 위한 2.5D맵핑 시스템의 구현)

  • Lee, Min-Kyu;Kim, Young-Un;Cho, Jun-Ei;Han, Sung-Kuk;Jung, Sung-Tae;Lee, Yong-Ju;Jung, Suck-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.599-602
    • /
    • 2005
  • This paper utilizing model picture of finished clothes in fashion design field various material (textile fabrics) doing Draping directly can invent new design, and do not produce direction sample or poetic theme width and confirm clothes work to simulation. Also, construct database about model and material image that can confirm Mapping result by real time. Development did the 2.5D Mapping system that used path extraction algorithm, warp algorithm, a lighting extraction and application algorithm in order to implement natural Draping of model picture and material image.

  • PDF

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Effectiveness of Woven Silk Dressing Materials on Full-skin Thickness Burn Wounds in Rat Model

  • Lee, Woo-Young;Um, In Chul;Kim, Min-Keun;Kwon, Kwang-Jun;Kim, Seong-Gon;Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.6
    • /
    • pp.280-284
    • /
    • 2014
  • Purpose: This study evaluated woven silk textile for burn wound dressing materials in an animal model. Methods: Ten rats were used in this experiment. Full-thickness $2{\times}2cm$ burn wounds were created on the back of the rats under anesthesia. In the experimental group, the wounds were treated with three different dressing materials from woven silk textile. In the control group, natural healing without any dressing material was set as control. The wound surface area was measured at five days, seven days, and 14 days. Wound healing was evaluated by histologic analysis. Results: There were no statistically significant differences among groups at five days post injury. The mean defect size at seven days was largest in Group 3 ($462.87mm^2$), and smallest in Group 1 ($410.89mm^2$), not a significant difference (P=0.341). The mean defect size at 14 days was smallest at the Group 3 ($308.28mm^2$) and largest in the control group ($388.18mm^2$), not a significant difference (P=0.190). The denuded area was smaller in Group 1 ($84.57mm^2$) and Group 2 ($82.50mm^2$) compared with the control group ($195.93mm^2$), not statistically significant differences (P=0.066, 0.062). The difference between Group 3 and control was also not statistically significant (P=0.136). In histologic analysis, the experimental groups re-epithelialized more than control groups. No evidence was found of severe inflammation. Conclusion: The healing of burn wounds was faster with silk weave textile more than the control group. There was no atypical inflammation with silk dressing materials. In conclusion, silk dressing materials could be used to treat burn wounds.

Effects of the Wet Cleaning to the Color Change of the Dyed Fabrics with Natural Dyes (천연염색포의 습식세척에 의한 색상변화)

  • Baek, Young-Mee;Goto-Doshida, Sumiko;Saito, Masako
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • In the Chosun period, the noble class usually buried the dead bodies in the lime-covered tomb. Recently their costumes are excavated while maintaining the shape. However, the textiles discovered from the inside have been degradated by a body and moisture. To conserve these textiles one of the most important thing is how to clean these textiles right after the excavation. The purpose of this study is to examine the effects of wet cleaning to minimize the color change of textile remains. For this purpose, silk and cotton were dyed with natural dyes (7 red, 1 blue, 6 yellow, 4 green and 4 purple colors), then they were kept for 6 months with pork meat at $10^{\circ}C$, and were washed by four cleaning solutions (water, anionic surfactant (SDS), non-ionic surfactant (Triton X-100) and natural surfactant (saponin)) at $20^{\circ}C$ and $40^{\circ}C$. The color change was evaluated by color difference (${\Delta}E$) between non-treated and after washed samples. From the results, it was found that the color changes are significantly different depending on the washing temperature, textile material, the cleaning agents and the type of dyes.

Analysis of Tack Properties of Aramid/Phenolic Prepreg (아라미드섬유/페놀수지 프리프레그의 Tack성 분석)

  • Hong, Tae Min;Lee, Ji Eun;Hong, Young Ki;Lee, Jung Soon;Cho, Dae Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.117-120
    • /
    • 2013
  • The prepreg material is a sheet of the reinforcement pre-impregnated with a resin. In this study, two types of prepreg were prepared with a general phenolic resin and the polyvinyl butyral (PVB) modified phenolic resin, respectively, with resin content of 40 wt%. After resin impregnation, the prepregs were heat treated in an oven to make them the B-stage. Surface morphology of the prepreg was observed by using a scanning electron microscope (SEM). Tack property of the prepreg is one of the major properties that govern the ability of prepreg to be laid up. In this study, the tack of prepreg was measured under various test parameters by a probe tact test. Test parameters were contact time, contact force and debonding rate. Most of the tack properties of the prepreg increased with the test parameters. Then tack properties exhibited a linear behavior with test parameters before a saturation point. Also, the tack of prepreg was investigated in relation with the fibrillation phenomena involved in the prepreg surface with the debonding rate.

Study of Merchandising Process of Fur Clothing (모피의류의 상품화과정에 관한 연구)

  • Kim, Ji-Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.3
    • /
    • pp.135-149
    • /
    • 2014
  • Fur clothing as fashion items is expanding into casual & ladies's wear market as well as fur market. The interest of fur fashion is rising. So this study compares and analyzes the merchandising process of textile clothing also it of fur clothing by merchandising steps. Fur clothing has so many change factors at time of purchase by scarcity of raw material, price fluctuation, exchange rate and others. Therefore it is primarily about securing of raw material. As soon as plan of product is finished, the purchase of fur raw material has to be started while progress of design products for commercializing the fur clothing. The design of fur clothing is consist of material design, color design and shape design. And It makes a new trend & market as we are developing new & various treatments. The some of imported materials are transferred to the factory for being treated first dressing, fabric treatments and dyeing processing according to the design. The first treated materials are transferred to the sewing factory again for secondary treatments and finally inspected and shipped. During secondary treatments the fur has gone through various manufacturing process for using like fabric materials and it takes long time because almost work is running manually. Unlike fabric clothing, fur clothing's manufacturing method is complicated and various from material process to shape process as per feature. Therefore the merchandising with fur cannot make mass production also needs detail craftsmanship depending by expert's skills. On this wise the fur clothing takes long time to the completion thus it has been risky and costly.

  • PDF

Preparation and Properties of Bio-inspired Waterborne Polyurethanes Containing Different Amount of Paraffin Wax

  • Kim, Hye-Lin;Kim, Ae-Li;Lee, Young-Hee;Kim, Sung Yeol;Park, Cha-Cheol;Rahman, Mohammad Mizanur;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • To prepare bio-inspired antifouling coating materials having similar structure with lotus, self-crosslinkable waterborne polyurethanes emulsions containing paraffin wax (CWPU/P0, 0.25, 0.5, 1.0, 1.5, 2.0, the number indicated the wt% of wax) were prepared by an emulsifier-free/solvent free prepolymer mixing process. The as-polymerized CWPU/P emulsions containing 0 - 1.00wt% of paraffin wax were found to be stable after 4 months, however, CWPU/P emulsions containing 1.50 and 2.00wt% of paraffin wax were unstable within 1 month storage. Considering the stability of emulsions, the optimum paraffin wax content was found to be about 1wt% to obtain stable antifouling coating emulsion material. The surface topology of CWPU/P film samples was characterized by atomic force microscopy (AFM). This study examined the effect of paraffin wax content on the surface roughness, water contact angle/surface energy, water swelling, light transmittance and tensile properties of CWPU/P film samples.

Performance Evaluation of Dicing Sawing of High-densified Al2O3 Bulk using Diamond Electroplated Band-saw Machine (다이아몬드전착 밴드쏘우장비를 이용한 고치밀도 알루미나소결체의 다이싱가공 성능평가)

  • Lee, Yong-Moon;Park, Young-Chan;Kim, Dong-Hyun;Lee, Man-Young;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, the brittle materials such as ceramics, glass, sapphire and textile material have been widely used in semiconductors, aerospace and automobile owing to high functional characteristics. On the other hand, it has the characteristics of difficult-to-cut material relative to all materials. In this study, diamond electro-deposited band-saw machine was developed to operate stably using water-coolant type through relative motion between band-saw tool and $Al_2O_3$ material. High densified $Al_2O_3$ material was manufactured by spark plasma sintering method. The bulk density was observed by the Archimedes law and the theoretical density was estimated to be $3.88g/cm^3$ and its hardness 14.7 MPa. From the dicing sawing test of $Al_2O_3$ specimen, behavior of surface roughness and band-saw wear are dominantly affected by the increase of the band-saw linear velocity. Additionally, an continuous pattern type of diamond band-saw was a very effective due to entry impact as a one-off for brittle material.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.