• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.031 seconds

Exploring the Direction of Home Economics Education in Preparation for the Generalization of a One-Person Household (1인 가구 시대의 가정과교육 방향 탐색)

  • Park, Mi Jeong
    • Human Ecology Research
    • /
    • v.57 no.1
    • /
    • pp.73-89
    • /
    • 2019
  • This study explores the social phenomenon of the universalization of one-person households through a literature analysis and text mining in order to explore a future direction for Home Economics Education(HEE) development in the one-person household era. From 2010 to 2018, texts from newspaper articles and book content of one-person households were analyzed through R program. The results of the study are as follows. In order to develop students' competency to live a happy life in the one-person household era, it is necessary to: (1) expand the preemptive and collaborative research of HEE, (2) develop and operate a curriculum to raise the living competency to live alone, (3) expand opportunities for secondary school students as well as off-campus youth, middle-aged, and elderly students, and (4) develop various HEE's elective curriculum focusing on the ability to live as one-person household. Also, (5) in order to overcome the psychological and social poverty and isolation of one-person households, HEE should strengthen the learner's ability to form relationships through self-esteem, care of others, community life, communication and conflict resolution education. In conclusion, HEE's independent living competency, relationship formation competency, and practical problem solving competency are all necessary competencies to live in one-person households. In this study, it is meaningful to suggest a future direction for HEE and to use new research methods such as word cloud techniques in the absence of HEE's previous research in relation to the increase of one-person households.

The Strategy of Wireless Power Transfer for Light Rail Transit By Core Technologies Analysis Based on Text Mining

  • Meng, Xiang-Yu;Han, Young-Jae;Eum, Soo-Min;Cho, Sung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.193-201
    • /
    • 2018
  • In this paper, we extracted relevant patent data and conducted statistical analysis to understand the technical development trend related to Wireless Power Transfer (WPT) for Light Rail Transit (LRT). Recently, with the development of WPT technologies, the Light Rail Transit (LRT) industry is concentrating on applying WPT to the power supply system of trains because of their advantages compared wired counterpart, such as low maintenance cost and high stability. This technology is divided into three areas: wireless feeding and collecting technology, high-frequency power converter technology and orbital and infrastructure technology. From each specific area, key words in patent document were extracted by TF-IDF method and analyzed by social network. In the keyword network, core word of each specific technology were extracted according to their degree centrality. Then, the multi-word phrases were also built to represent the concept of core technologies. Finally, based on the analysis results, the development strategies for each specifics technical area of WPT in LRT filed will be provided.

A Study on Effective Sentiment Analysis through News Classification in Bankruptcy Prediction Model (부도예측 모형에서 뉴스 분류를 통한 효과적인 감성분석에 관한 연구)

  • Kim, Chansong;Shin, Minsoo
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.187-200
    • /
    • 2019
  • Bankruptcy prediction model is an issue that has consistently interested in various fields. Recently, as technology for dealing with unstructured data has been developed, researches applied to business model prediction through text mining have been activated, and studies using this method are also increasing in bankruptcy prediction. Especially, it is actively trying to improve bankruptcy prediction by analyzing news data dealing with the external environment of the corporation. However, there has been a lack of study on which news is effective in bankruptcy prediction in real-time mass-produced news. The purpose of this study was to evaluate the high impact news on bankruptcy prediction. Therefore, we classify news according to type, collection period, and analyzed the impact on bankruptcy prediction based on sentiment analysis. As a result, artificial neural network was most effective among the algorithms used, and commentary news type was most effective in bankruptcy prediction. Column and straight type news were also significant, but photo type news was not significant. In the news by collection period, news for 4 months before the bankruptcy was most effective in bankruptcy prediction. In this study, we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.

Analysis of the supportive care needs of the parents of preterm children in South Korea using big data text-mining: Topic modeling

  • Park, Ji Hyeon;Lee, Hanna;Cho, Haeryun
    • Child Health Nursing Research
    • /
    • v.27 no.1
    • /
    • pp.34-42
    • /
    • 2021
  • Purpose: The purpose of this study was to identify the supportive care needs of parents of preterm children in South Korea using text data from a portal site. Methods: In total, 628 online newspaper articles and 1,966 social network service posts published between January 1 and December 31, 2019 were analyzed. The procedures in this study were conducted in the following order: keyword selection, data collection, morpheme analysis, keyword analysis, and topic modeling. Results: The term "yirundung-yi", which is a native Korean word referring to premature infants, was confirmed to be a useful term for parents. The following four topics were identified as the supportive care needs of parents of preterm children: 1) a vague fear of caring for a baby upon imminent neonatal intensive care unit discharge, 2) real-world difficulties encountered while caring for preterm children, 3) concerns about growth and development problems, and 4) anxiety about possible complications. Conclusion: Supportive care interventions for parents of preterm children should include general parenting methods for babies. A team composed of multidisciplinary experts must support the individual growth and development of preterm children and manage the complications of prematurity using highly accessible media.

Topics and Sentiment Analysis Based on Reviews of Omni-Channel Retailing

  • KIM, Soon-Hong;YOO, Byong-Kook
    • Journal of Distribution Science
    • /
    • v.19 no.4
    • /
    • pp.25-35
    • /
    • 2021
  • Purpose: This study aims to analyze the factors affecting customer satisfaction in the customer reviews of omni-channel, posted on Internet blogs, cafes, and YouTube using text mining analysis. Research, data, and Methodology: In this study, frequency analysis is performed and the LDA (Latent Dirichlet Allocation) is used to analyze social big data to respond to reviewers' reaction to the recently opened omni-channel shopping reviews by L Shopping Company. Additionally, based on the topic analysis, we conduct a sentiment analysis on purchase reviews and analyze the characteristics of each topic on the positive or negative sentiments of omni-channel app users. Results: As a result of a topic analysis, four main topics are derived: delivery and events, economic value, recommendations and convenience, and product quality and brand awareness. The emotional analysis reveals that the reviewers have many positive evaluations for price policy and product promotion, but negative evaluations for app use, delivery, and product quality. Conclusions: Retailers can establish customized marketing strategies by identifying the customer's major interests through text mining analysis. Additionally, the analysis of sentiment by subject becomes an important indicator for developing products and services that customers want by identifying areas that satisfy customers and areas that evoke negative reactions.

Keyword trends analysis related to the aviation industry during the Covid-19 period using text mining (텍스트마이닝을 활용한 Covid-19 기간 동안의 항공산업 관련 키워드 트렌드 분석)

  • Choi, Donghyun;Song, Bomi;Park, Dahyeon;Lee, Sungwoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • The purpose of this study is to conduct keyword trend analysis using articles data on the impact of Covid-19 in the aviation in dustry. In this study, related articles were extracted centering on the keyword "Airline" by dividing the period of 6months before and after Covid-19 occurrence. After that, Topic modeling(LDA) was performed. Through this, The main topic was extracted in the event of an epidemic such as Covid-19, It is expected to be used as primary data to predict the aviation industry's impact when occurrence like Covid-19.

Analysis of Business Performance of Local SMEs Based on Various Alternative Information and Corporate SCORE Index

  • HWANG, Sun Hee;KIM, Hee Jae;KWAK, Dong Chul
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.3
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: The purpose of this study is to compare and analyze the enterprise's score index calculated from atypical data and corrected data. Research design, data, and methodology: In this study, news articles which are non-financial information but qualitative data were collected from 2,432 SMEs that has been extracted "square proportional stratification" out of 18,910 enterprises with fixed data and compared/analyzed each enterprise's score index through text mining analysis methodology. Result: The analysis showed that qualitative data can be quantitatively evaluated by region, industry and period by collecting news from SMEs, and that there are concerns that it could be an element of alternative credit evaluation. Conclusion: News data cannot be collected even if one of the small businesses is self-employed or small businesses has little or no news coverage. Data normalization or standardization should be considered to overcome the difference in scores due to the amount of reference. Furthermore, since keyword sentiment analysis may have different results depending on the researcher's point of view, it is also necessary to consider deep learning sentiment analysis, which is conducted by sentence.

Investigation of Trend in Virtual Reality-based Workplace Convergence Research: Using Pathfinder Network and Parallel Neighbor Clustering Methodology (가상현실 기반 업무공간 융복합 분야 연구 동향 분석 : 패스파인더 네트워크와 병렬 최근접 이웃 클러스터링 방법론 활용)

  • Ha, Jae Been;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.19-43
    • /
    • 2022
  • Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.

A Study on the Changes in Consumer Perceptions of the Relationship between Ethical Consumption and Consumption Value: Focusing on Analyzing Ethical Consumption and Consumption Value Keyword Changes Using Big Data (윤리적 소비와 소비가치의 관계에 대한 소비자 인식 변화: 소셜 빅데이터를 활용한 윤리적 소비와 소비가치의 키워드 변화 분석을 중심으로)

  • Shin, Eunjung;Koh, Ae-Ran
    • Human Ecology Research
    • /
    • v.59 no.2
    • /
    • pp.245-259
    • /
    • 2021
  • The purpose of this study was to analyze big data to identify the sub-dimensions of ethical consumption, as well as the consumption value associated with ethical consumption that changes over time. For this study, data were collected from Naver and Daum using the keyword 'ethical consumption' and frequency and matrix data were extracted through Textom, for the period January 1, 2016, to December 31, 2018. In addition, a two-way mode network analysis was conducted using the UCINET 6.0 program and visualized using the NetDraw function. The results of text mining show increasing keyword frequency year-on-year, indicating that interest in ethical consumption has grown. The sub-dimensions derived for 2014 and 2015 are fair trade, ethical consumption, eco-friendly products, and cooperatives and for 2016 are fair trade, ethical consumption, eco-friendly products and animal welfare. The results of deriving consumption value keywords were classified as emotional value, social value, functional value and conditional value. The influence of functional value was found to be growing over time. Through network analysis, the relationship between the sub-dimensions of ethical consumption and consumption values derived each year from 2014 to 2018 showed a significantly strong correlation between eco-friendly product consumption and emotional value, social value, functional value and conditional value.

Brand Personality of Global Automakers through Text Mining

  • Kim, Sungkuk
    • Journal of Korea Trade
    • /
    • v.25 no.2
    • /
    • pp.22-45
    • /
    • 2021
  • Purpose - This study aims to identify new attributes by analyzing reviews conducted by global automaker customers and to examine the influence of these attributes on satisfaction ratings in the U.S. automobile sales market. The present study used J.D. Power for customer responses, which is the largest online review site in the USA. Design/methodology - Automobile customer reviews are valid data available to analyze the brand personality of the automaker. This study collected 2,998 survey responses from automobile companies in the U.S. automobile sales market. Keyword analysis, topic modeling, and the multiple regression analysis were used to analyze the data. Findings - Using topic modeling, the author analyzed 2,998 responses of the U.S. automobile brands. As a result, Topic 1 (Competence), Topic 5 (Sincerity), and Topic 6 (Prestige) attributes had positive effects, and Topic 2 (Sophistication) had a negative effect on overall customer responses. Topic 4 (Conspicuousness) did not have any statistical effect on this research. Topic 1, Topic 5, and Topic 6 factors also show the importance of buying factors. This present study has contributed to identifying a new attribute, personality. These findings will help global automakers better understand the impacts of Topic 1, Topic 5, and Topic 6 on purchasing a car. Originality/value - Contrary to a traditional approach to brand analysis using questionnaire survey methods, this study analyzed customer reviews using text mining. This study is timely research since a big data analysis is employed in order to identify direct responses to customers in the future.