• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.022 seconds

Toward Sentiment Analysis Based on Deep Learning with Keyword Detection in a Financial Report (재무 보고서의 키워드 검출 기반 딥러닝 감성분석 기법)

  • Jo, Dongsik;Kim, Daewhan;Shin, Yoojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.670-673
    • /
    • 2020
  • Recent advances in artificial intelligence have allowed for easier sentiment analysis (e.g. positive or negative forecast) of documents such as a finance reports. In this paper, we investigate a method to apply text mining techniques to extract in the financial report using deep learning, and propose an accounting model for the effects of sentiment values in financial information. For sentiment analysis with keyword detection in the financial report, we suggest the input layer with extracted keywords, hidden layers by learned weights, and the output layer in terms of sentiment scores. Our approaches can help more effective strategy for potential investors as a professional guideline using sentiment values.

Real Estate Service App Review Analysis Using Text Mining (텍스트 마이닝을 이용한 부동산 서비스 앱 리뷰 분석)

  • Kang, Seong An;Kim, Dong Yeon;Ryu, Min Ho
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.227-245
    • /
    • 2021
  • Purpose The purpose of this study is to examine the variables affecting user satisfaction through previous studies and to examine the differences between apps. Differences are based on factors that determine the quality of real estate service apps and derived by the topic modeling results. Design/methodology/approach This study conducts topic modeling to find factors affecting user satisfaction of real estate service apps using user reviews. Sentiment analysis is additionally conduct on the derived topics to examine the user responses. Findings Users give high sentiment scores for services that can manage factors such as usefulness of information, false sales, and hype. In addition, managing the basic services of app is an important factor influencing user satisfaction.

Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis

  • Shin, Bee;Ryu, Sohee;Kim, Yongjun;Kim, Dongwhan
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The importance of online reviews is prevalent as more people access goods or places online and make decisions to visit or purchase. However, such reviews are generally provided by short sentences or mere star ratings; failing to provide a general overview of customer preferences and decision factors. This study explored and broke down restaurant reviews found on Google Maps. After collecting and analyzing 5,427 reviews, we vectorized the importance of words using the TF-IDF. We used a random forest machine learning algorithm to calculate the coefficient of positivity and negativity of words used in reviews. As the result, we were able to build a dictionary of words for positive and negative sentiment using each word's coefficient. We classified words into four major evaluation categories and derived insights into sentiment in each criterion. We believe the dictionary of review words and analyzing the major evaluation categories can help prospective restaurant visitors to read between the lines on restaurant reviews found on the Web.

Understanding Brand Image from Consumer-generated Hashtags

  • Park, Keeyeon Ki-cheon;Kim, Hye-jin
    • Asia Marketing Journal
    • /
    • v.22 no.3
    • /
    • pp.71-85
    • /
    • 2020
  • Social media has emerged as a major hub of engagement between brands and consumers in recent years, and allows user-generated content to serve as a powerful means of encouraging communication between the sides. However, it is challenging to negotiate user-generated content owing to its lack of structure and the enormous amount generated. This study focuses on the hashtag, a metadata tag that reflects customers' brand perception through social media platforms. Online users share their knowledge and impressions using a wide variety of hashtags. We examine hashtags that co-occur with particular branded hashtags on the social media platform, Instagram, to derive insights about brand perception. We apply text mining technology and network analysis to identify the perceptions of brand images among consumers on the site, where this helps distinguish among the diverse personalities of the brands. This study contributes to highlighting the value of hashtags in constructing brand personality in the context of online marketing.

Exploring the Key Factors that Lead to Intentions to Use AI Fashion Curation Services through Big Data Analysis

  • Shin, Eunjung;Hwang, Ha Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.676-691
    • /
    • 2022
  • An increasing number of companies in the fashion industry are using AI curation services. The purpose of this study is to investigate perceptions of and intentions to use AI fashion curation services among customers by using text mining. To accomplish this goal, we collected a total of 34,190 online posts from two Korean portals, Naver and Daum. We conducted frequency analysis to identify the most frequently mentioned keywords using Textom. The analysis extracted "various," "good," "many," "right," and "new" at the highest frequency, indicating that consumers had positive perceptions of AI fashion curation services. In addition, we conducted a semantic network analysis with the top-50 most frequently used keywords, classifying customers' perceptions of AI fashion curation services into three groups: shopping, platform, and business profit. We also identified the factors that boost continuous use intentions: usability, usefulness, reliability, enjoyment, and personalization. We conclude this paper by discussing the theoretical and practical implications of these findings.

Changes in Specialty Coffee Consumption Post-pandemic

  • Lim, Miri;Ryu, Gihwan
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.157-161
    • /
    • 2022
  • The coffee industry continues to grow steadily due to the spread of coffee and changes in consumer awareness. Once upon a time, instant coffee was common, People today have distinct personal preferences As consumption needs for favorite foods are segmented, ways to enjoy coffee are diversifying. This study was conducted through analysis of consumption changes for specialty coffee as a changed issue of COVID-19 The goal is to present a vision for the future of the specialty coffee industry. As a research method, text mining through big data analysis was conducted to extract and analyze factors affecting the change in specialty coffee consumption. As a result of the study, we judged that specialty coffee is consumed by using a drip tool that allows you to easily enjoy coffee at home after Corona 19. Therefore, hand drips used in home cafes were found to play a central role in the change in specialty coffee consumption.

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

Research on the Users' Inquiries on the Easy Payment Services using Text Mining Method (텍스트마이닝 방법을 이용한 간편결제서비스 이용자의 질문 분석)

  • Kim, Myoung Suk;Kim, Jiyeon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.269-279
    • /
    • 2022
  • Though easy payment service is the most well accepted one among various fin-tech services, the users still face difficulties and feel embarrassed when they use it. Over the past few years, many studies have been done on the users' experiences of easy payment service but there are little studies directly exploring the users' inquiries on the web. In this paper, we analyzed users' questions on Kakao Pay, Naver Pay, and Samsung Pay in Naver Jisik-iN, the biggest inquiry service in Korea from 2019 to 2020. We used keyword analysis, association analysis, and sentiment analysis. We found out that each payment service has distinct inquiries from the users according to its platform which it is based on.

Identifying research trends in the emergency medical technician field using topic modeling (토픽모델링을 활용한 응급구조사 관련 연구동향)

  • Lee, Jung Eun;Kim, Moo-Hyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.2
    • /
    • pp.19-35
    • /
    • 2022
  • Purpose: This study aimed to identify research topics in the emergency medical technician (EMT) field and examine research trends. Methods: In this study, 261 research papers published between January 2000 and May 2022 were collected, and EMT research topics and trends were analyzed using topic modeling techniques. This study used a text mining technique and was conducted using data collection flow, keyword preprocessing, and analysis. Keyword preprocessing and data analysis were done with the RStudio Version 4.0.0 program. Results: Keywords were derived through topic modeling analysis, and eight topics were ultimately identified: patient treatment, various roles, the performance of duties, cardiopulmonary resuscitation, triage systems, job stress, disaster management, and education programs. Conclusion: Based on the research results, it is believed that a study on the development and application of education programs that can successfully increase the emergency care capabilities of EMTs is needed.

Development of chatting program using social issue keyword information (사회적 핵심 이슈 키워드 정보를 활용한 채팅 프로그램 개발)

  • Yoon, Kyung-Suob;Jeong, Won-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.307-310
    • /
    • 2020
  • 본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.

  • PDF