• Title/Summary/Keyword: Text-based Image Retrieval

Search Result 59, Processing Time 0.026 seconds

A Novel Sub-image Retrieval Approach using Dot-Matrix (점 행렬을 이용한 새로운 부분 영상 검색 기법)

  • Kim, Jun-Ho;Kang, Kyoung-Min;Lee, Do-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1330-1336
    • /
    • 2012
  • The Image retrieval has been study different approaches which are text-based, contents-based, area-based method and sub-image finding. The sub-image retrieval is to find a query image in the target one. In this paper, we propose a novel sub-image retrieval algorithm by Dot-Matrix method to be used in the bioinformatics. Dot-Matrix is a method to evaluate similarity between two sequences and we redefine the problem for retrieval of sub-image to the finding similarity of two images. For the approach, the 2 dimensional array of image converts a the vector which has gray-scale value. The 2 converted images align by dot-matrix and the result shows candidate sub-images. We used 10 images as target and 5 queries: duplicated, small scaled, and large scaled images included x-axes and y-axes scaled one for experiment.

A Design and Implementation of a Content_Based Image Retrieval System using Color Space and Keywords (칼라공간과 키워드를 이용한 내용기반 화상검색 시스템 설계 및 구현)

  • Kim, Cheol-Ueon;Choi, Ki-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1418-1432
    • /
    • 1997
  • Most general content_based image retrieval techniques use color and texture as retrieval indices. In color techniques, color histogram and color pair based color retrieval techniques suffer from a lack of spatial information and text. And This paper describes the design and implementation of content_based image retrieval system using color space and keywords. The preprocessor for image retrieval has used the coordinate system of the existing HSI(Hue, Saturation, Intensity) and preformed to split One image into chromatic region and achromatic region respectively, It is necessary to normalize the size of image for 200*N or N*200 and to convert true colors into 256 color. Two color histograms for background and object are used in order to decide on color selection in the color space. Spatial information is obtained using a maximum entropy discretization. It is possible to choose the class, color, shape, location and size of image by using keyword. An input color is limited by 15 kinds keyword of chromatic and achromatic colors of the Korea Industrial Standards. Image retrieval method is used as the key of retrieval properties in the similarity. The weight values of color space ${\alpha}(%)and\;keyword\;{\beta}(%)$ can be chosen by the user in inputting the query words, controlling the values according to the properties of image_contents. The result of retrieval in the test using extracted feature such as color space and keyword to the query image are lower that those of weight value. In the case of weight value, the average of te measuring parameters shows approximate Precision(0.858), Recall(0.936), RT(1), MT(0). The above results have proved higher retrieval effects than the content_based image retrieval by using color space of keywords.

  • PDF

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Rearranged DCT Feature Analysis Based on Corner Patches for CBIR (contents based image retrieval) (CBIR을 위한 코너패치 기반 재배열 DCT특징 분석)

  • Lee, Jimin;Park, Jongan;An, Youngeun;Oh, Sangeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2270-2277
    • /
    • 2016
  • In modern society, creation and distribution of multimedia contents is being actively conducted. These multimedia information have come out the enormous amount daily, the amount of data is also large enough it can't be compared with past text information. Since it has been increased for a need of the method to efficiently store multimedia information and to easily search the information, various methods associated therewith have been actively studied. In particular, image search methods for finding what you want from the video database or multiple sequential images, have attracted attention as a new field of image processing. Image retrieval method to be implemented in this paper, utilizes the attribute of corner patches based on the corner points of the object, for providing a new method of efficient and robust image search. After detecting the edge of the object within the image, the straight lines using a Hough transformation is extracted. A corner patches is formed by defining the extracted intersection of the straight line as a corner point. After configuring the feature vectors with patches rearranged, the similarity between images in the database is measured. Finally, for an accurate comparison between the proposed algorithm and existing algorithms, the recall precision rate, which has been widely used in content-based image retrieval was used to measure the performance evaluation. For the image used in the experiment, it was confirmed that the image is detected more accurately in the proposed method than the conventional image retrieval methods.

Web based Image Retrieval system using User Sketch and Example Image Queries (예제 이미지와 사용자 스케치 질의에 의한 웹 기반 이미지 검색 시스템)

  • Hwang Byung-Kon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2004
  • Due to the recent explosive progress of Web, We can easily access a large number of images from m. In this paper, we describe our approach of developing a general purpose content based image retrieval system over the H using a Web agent. The Web agent extracts text information of images from the links and file contents in HTML. The proposed system retrieves the images from database using the query by sketch and the query by example on Web browser. Experimental results demonstrate the effectiveness of the new approach.

  • PDF

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

A Study on Contents-based Retrieval using Wavelet (Wavelet을 이용한 내용기반 검색에 관한 연구)

  • 강진석;박재필;나인호;최연성;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1051-1066
    • /
    • 2000
  • According to the recent advances of digital encoding technologies and computing power, large amounts of multimedia informations such as image, graphic, audio and video are fully used in multimedia systems through Internet. By this, diverse retrieval mechanisms are required for users to search dedicated informations stored in multimedia systems, and especially it is preferred to use contents-based retrieval method rather than text-type keyword retrieval method. In this paper, we propose a new contents-based indexing and searching algorithm which aims to get both high efficiency and high retrieval performance. To achieve these objectives, firstly the proposed algorithm classifies images by a pre-processing process of edge extraction, range division, and multiple filtering, and secondly it searches the target images using spatial and textural characteristics of colors, which are extracted from the previous process, in a image. In addition, we describe the simulation results of search requests and retrieval outputs for several images of company's trade-mark using the proposed contents-based retrieval algorithm based on wavelet.

  • PDF

Relevance Feedback using Region-of-interest in Retrieval of Satellite Images (위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백)

  • Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.434-445
    • /
    • 2009
  • Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.

Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval (내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델)

  • Choi, Min-Seok
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • With the development of various devices and communication technologies, the production and distribution of various multimedia contents are increasing exponentially. In order to retrieve multimedia data such as images and videos, an approach different from conventional text-based retrieval is needed. Color and shape are key features used in content-based image retrieval, which quantifies and analyzes various physical features of images and compares them to search for similar images. Color and shape have been used as independent features, but the two features are closely related in terms of cognition. In this paper, a method of describing the spatial distribution of color using a complex color model that projects three-dimensional color information onto two-dimensional complex form is proposed. Experimental results show that the proposed method can efficiently represent the shape of spatial distribution of colors by frequency transforming the complex image and reconstructing it with only a few coefficients in the low frequency.

Improved SIM Algorithm for Contents-based Image Retrieval (내용 기반 이미지 검색을 위한 개선된 SIM 방법)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2009
  • Contents-based image retrieval methods are in general more objective and effective than text-based image retrieval algorithms since they use color and texture in search and avoid annotating all images for search. SIM(Self-organizing Image browsing Map) is one of contents-based image retrieval algorithms that uses only browsable mapping results obtained by SOM(Self Organizing Map). However, SOM may have an error in selecting the right BMU in learning phase if there are similar nodes with distorted color information due to the intensity of light or objects' movements in the image. Such images may be mapped into other grouping nodes thus the search rate could be decreased by this effect. In this paper, we propose an improved SIM that uses HSV color model in extracting image features with color quantization. In order to avoid unexpected learning error mentioned above, our SOM consists of two layers. In learning phase, SOM layer 1 has the color feature vectors as input. After learning SOM Layer 1, the connection weights of this layer become the input of SOM Layer 2 and re-learning occurs. With this multi-layered SOM learning, we can avoid mapping errors among similar nodes of different color information. In search, we put the query image vector into SOM layer 2 and select nodes of SOM layer 1 that connects with chosen BMU of SOM layer 2. In experiment, we verified that the proposed SIM was better than the original SIM and avoid mapping error effectively.

  • PDF