패러프레이즈는 같은 의미를 다른 단어를 사용하여 표현한 것을 말한다. 패러프레이즈는 일상적인 언어생활에서도 흔히 관측되며 자연어처리 분야에서 다양하게 활용할 수 있다. 특히 최근에는 통계적 기계 번역 분야에서 데이터 부족 문제를 보완하여 번역 성능을 향상시키기 위해 패러프레이즈를 활용한 연구가 많다. 이중 언어 병렬 말뭉치를 이용하는 패러프레이즈 추출 과정에서는 일반적으로 다른 언어를 피봇으로 사용하기 때문에 단어 정렬 및 구 정렬 과정을 두 번 거친다. 따라서 단어 정렬의 오류가 패러프레이즈로 전파될 수 있다. 특히 한국어와 영어와 같이 언어의 구조적인 차이가 큰 경우에는 단어 정렬 오류가 더 심각하기 때문에 피봇 프레이즈부터 잘못 추출되는 경우가 많아진다. 이러한 문제를 보완하기 위해 본 논문에서는 패러프레이즈 추출 과정에서 피봇 프레이즈를 차별화하는 방안으로서 어휘, 품사 정보를 이용해 올바른 피봇 프레이즈에 더 높은 가중치를 부여하는 방법을 제안한다. 실험 결과, 제안하는 피봇 가중치 부여 방법을 기존의 패러프레이즈 추출 방법에 추가했을 때 패러프레이즈 추출 정확률과 재현율이 모두 향상됨을 확인할 수 있었다. 또한, 제안하는 방법을 통해 추출한 패러프레이즈를 한영 기계 번역 시스템에서 활용하였을 때 번역률이 향상됨을 확인할 수 있었다.
본 연구에서는 기존에 개발된 뇌 질환 임상연구를 위한 시스템에 데이터베이스 효율적인 접근을 위한 미들웨어를 설계 및 개발 하였다. 뇌 질환 임상연구를 위한 시스템이란, 정합기와 분석기로 나누어져 있는 것으로 정합기에서 만든 정합 데이터들을 모아 분석기에서 다양한 변수를 바탕으로 통계적 자료를 산출하는 시스템이다. 미들웨어는 데이터베이스 관리 및 다수의 클라이언트의 데이터 요청 처리를 위해 설계 되었으며, 각각의 기능을 모듈로 구분하여 기능 간에 연결성을 약화시켜 모듈 재사용을 구현하였다. 그리고 영상데이터 모듈은 영상 데이터를 효율적으로 관리 및 저장하기 위하여 데이터베이스에 영상을 텍스트 기반으로 압축한 후에 저장하는 방법을 사용하였다. 700장의 실제 의료 임상 데이터를 이용한 테스트 결과, 데이터의 전송시간이 기존 시스템에 비해 최고 115 배까지 단축되었으며, 개선된 모듈 구조를 통해 안정적인 시스템 운용과 향상된 보안기능을 제공하게 되었다. 향후 대규모 의료 데이터베이스 구축에 있어서 이러한 미들웨어의 중요성은 더욱 증대될 것이라 생각된다.
기존의 PC나 W/S보다 이동성으로 인해 성능 상 제약이 많은 이동 컴퓨터 (mobile computer)는 인터넷을 통한 멀티미디어 서비스를 위해 프락시 서버(proxy server)를 이용하여 이미지 파일의 양을 줄이거나 모든 데이타를 문자로만 처리해서 전송 받고 있다. 그러나 기존의 프락시 서버들은 다양한 이동 컴퓨터들로부터 H/W의 사양을 전송 받지 못하기 때문에, 이동 컴퓨터의 디스플레이 크기가 다양함에도 불구하고 동일한 크기(pixels)의 이미지 파일을 이동 컴퓨터들에게 전송해야만 한다. 그리고 사용자 별로 구분된 캐시를 사용함으로써 캐시의 적중률(hit ratio)이 떨어지게 된다. 이를 해결하기 위하여, 본 논문에서는 디스플레이 크기와 색상을 기준으로 다양한 이동 컴퓨터들을 클래스로 나누고, WWW의 이미지 파일을 각각의 클래스에 적합하게 변환하여 저장하는 프락시 서버인 '클래스 기반 프락시(Class-based Proxy)'를 설계하고 구현하였다. 클래스 기반 프락시는 클라이언트 장치 (client device)가 요구하는 이미지 파일을 해당 클래스의 디스플레이 크기에 비례하여 변환한다. 따라서, 이동 컴퓨터들은 해당 클래스에 맞도록 변환된 이미지 파일을 클래스 기반 프락시로부터 전송 받기 때문에 PC나 W/S에서 보던 홈페이지의 화면을 이동 컴퓨터에서도 유사하게 볼 수 있다. 또한, 클래스 기반 프락시는 캐시에 저장되어 있는 변환된 이미지 파일을 동일한 클래스의 이동 컴퓨터들이 서로 공유하도록 하였다. 본 논문에서 구현한 클래스 기반 프락시와 기존의 프락시 서버를 테스트 한 결과, 클래스 기반 프락시 는 클라이언트에게 적합하게 변환된 이미지 파일들이 캐시에 저장되어 사용될 때 기존의 프락시 서버보다 빠른 속도를 보였다. 그리고 사용자들이 늘어날수록 클래스 기반 프락시가 기존의 프락시 서버보다 빠른 처리 속도를 나타냈다. 따라서, 클래스 기반 프락시는 클래스 별로 구분된 캐시로 인해 프락시 서버의 부담을 줄임으로써, 기존의 프락시 서버들보다 확장성(scalability)이 향상되었다.
구조적 개발 방법론에 적용하도록 만들어진 복잡도 척도들은 클래스, 상속성, 메시지 전달 그리고 캡슐롸와 같은 객체지향의 개념에 직접적으로 적용할 수 없다. 또한, 기존이 객체지향 소프트웨어에 대한 척도의 연구는 프로그램의 복잡도나, 설계 단계의 척도가 대부분이었다. 실제로 분석 단계 클래스의 복잡도를 낮춤으로써, 시스템의 개발 노력이나 비용 및 유지보수 단계에서의 노력이 크게 줄어들게 되므로, 분석 클래스에 대한 복잡도를 측량하기 위한 척도가 필요하다. 본 논문에서는 객체지향 개발방법론인 Unified Process의 분석 단계에서 추출되는 분석 클래스에 대하여 복잡도를 측정할 수 있는 새로운 척도를 제안한다. 협력의 복잡도 CC(Collaboration Complexity)는 가능한 협력의 최대 수로서 클래스가 잠재적으로 얼마나 복잡할 수 있는지를 측정하기 위한 척도이며, 각 협력자들의 인터페이스를 이해하는 것과 관련된 총체적 어려움을 측정하는 인터페이스 복잡도 IC(Interface Complexity)를 정의하였다. 제안된 척도는 클래스의 크기 및 상속성에 대하여 수학적인 증명을 하였으며, Weyuker의 9가지 공리적 성질에 대하여 이론적인 검증을 하였다. 또한, 텍스트 마이닝 기법을 사용하여 사용자의 질문에 자동으로 응답하는 시스템의 분석 클래스에 대하여 제안된 척도를 사용하여 복잡도를 측정하였고 기존의 복잡도 척도인 CBO와 WMC의 값을 계산하여 비교하였다. CC와 CBO, IC와 WMC의 값을 비교해 본 결과 제안된 복잡도 척도의 계산 결과 제안된 복잡도 척도의 계산 결과 값이 그 값들보다 좀 더 복잡도를 잘 표현하고 있었다. 이로써 소프트웨어 개발 주기의 초기에 클래스에 대한 복잡도를 평가해 보고, 나머지 단계에 필요한 시간과 노력을 예측함으로써 보다 비용-효과적인 객체지향 소프트웨어를 개발할 수 있는 가능성이 높아진다.
Last March, the world Go competition between AlphaGo, AI Go program developed by Google Deep Mind and professional Go player Lee Sedol has shown us that the 4th industrial revolution using AI has come close. Especially, there ar many system combined with AI hae been developing including program for researching legal information, system for expecting jurisdiction, and processing big data, there is saying that even AI legal person is ready for its appearance. As legal field is mostly based on text-based document, such characteristic makes it easier to adopt artificial intelligence technology. When a legal person receives a case, the first thing to do is searching for legal information and judical precedent, which is the one of the strength of AI. It is very difficult for a human being to utilize a flow of legal knowledge and figures by analyzing them but for AI, this is nothing but a simple job. The ability of AI searching for regulation, precedent, and literature related to legal issue is way over our expectation. AI is evaluated to be able to review 1 billion pages of legal document per second and many people agree that lot of legal job will be replaced by AI. Along with development of AI service, legal service is becoming more advanced and if it devotes to ethical solving of legal issues, which is the final goal, not only the legal field but also it will help to gain nation's trust. If nations start to trust the legal service, it would never be completely replaced by AI. What is more, if it keeps offering advanced, ethical, and quick legal service, value of law devoting to the society will increase and finally, will make contribution to the nation. In this time where we have to compete with AI, we should try hard to increase value of traditional legal service provided by human. In the future, priority of good legal person will be his/her ability to use AI. The only field left to human will be understanding and recovering emotion of human caused by legal problem, which cannot be done by AI's controlling function. Then, what would be the attitude of legal people in this period? It would be to learn the new technology and applying in the field rather than going against it, this will be the way to survive in this new AI period.
360 영상은 상하좌우 모든 영역에 대한 정보를 갖고 있기 때문에 종종 지나치게 많은 정보를 포함하게 된다. 또한 360 영상의 내용을 2D 모니터를 이용하여 확인하기 위해서는 마우스를 이용하여 360 영상을 돌려 봐야 하거나, 또는 심하게 왜곡된 2D 영상으로 변환해서 봐야 하는 문제가 있다. 따라서 360 영상에서 사용자가 원하는 물체를 찾는 것은 상당히 까다로운 일이 될 수 있다. 본 논문은 물체나 영역을 묘사하는 문장이 주어졌을 때, 360 영상 내에서 문장과 가장 잘 어울리는 영상을 추출해 내는 방법을 제시한다. 본 논문에서 제시한 방법은 주어진 문장 뿐 아니라 구도 역시 고려하여 구도 면에서도 보기 좋은 결과 영상을 생성한다. 본 논문에서 제시하는 방법은 우선 360 영상을 2D 큐브맵으로 변환한다. 일반적인 큐브맵은 큐브맵의 경계 부분에 걸쳐 있는 물체가 있을 경우, 이를 검출하기 어려운 문제가 있다. 따라서 더 정확한 물체 검출을 위해 본 논문에서는 변형된 큐브맵을 제시한다. 이렇게 변형된 큐브맵에 Long Short Term Memory (LSTM) 네트워크 기반의 자연어 문장을 이용한 물체 검출 방법을 적용한다. 최종적으로 원래의 360영상에서 검출된 영역을 포함하면서도 영상 구도 면에서 보기 좋은 영역을 찾아서 결과 영상을 생성한다.
구조적 모호성은 자연 언어 문장을 분석할 때 흔히 나타내는 문제점 중의 하나로,지금까지 이문제의 해결은 대단히 어려운 것으로 인식되어 왔다.그러나,구조적 모호성을 해소하지 않고 올바른 언어 처리를 한다는 것은 사실상 불가능하다.본 논문에서는 이 문제에 대하여 정보 이론적(information-theoretic)개념인 상호 정보(mutual information)를 이용한 통계적 접근방법을 제안한다.상호정보는 말 뭉치로 부터 자동 습득이 가능하므로 지식습득속도가 대단히 빠를뿐만 아니라 지속적인 지식습득이 가능하다. 구조적 모호성 해소는 물론 모호성 해소 결과의 옳고 그름을 스스로 판단할수 있는 능력을 부여할수 있다면 보다 지능적인 시스템을 개발하는데 도움이 될것이다.본 논문에서는 그와 같은 지적 능력을 부여한느데 필요한 확신도(congidence measure) 개념도 또한 제시한다.확신도는 구조적 모호성을 해소하고 난 후에 계산되는 수치로서,구조적 모호성이 올바르게 해소되었을 가능성이 높으면 높을수록 그 값이 커지는 성질을 가지고 있다. 본 논문에서 제시한 구조적 모호성 해소 알고리즘의 타당성을 검증하기 위하여 이공계 논문 초록으로부터 발췌된 약 160만 단어의 말뭉치로부터 상호 정보를 자동 습득하고 이를 이용하요,1,639개의 문장에 대하여 구조적 모호성을 해소하는 실험을 하였다. 실험결과 구조적 모호성 해소 정화도는 약 80%로 나타났다.확신도 개념을 이용할 경우 구조적 모호성 해소가 잘못된 문장을 찾아 정정하는 작업을 매우 효과적으로 진행할 수 있었다.
인터넷의 발전으로 웹 상에 수많은 문서 및 정보가 존재하는 상황에서 사용자가 원하는 정보를 담은 웹 문서를 검색하여 주는 웹 정보 검색 기술은 매우 중요하게 되었다. 본 논문에서는 웹 정보 검색 시스템의 성능 향상에 효과적인 몇 가지 주요한 기술을 제안하였다. 기존 시스템들은 주로 문서와 질의의 유사도를 계산하여 이를 주요 정보로 이용하였다. 그러나 본 논문에서는 여기에서 한 걸음 더 나아가 문서 안의 각 문장들이 질의와 얼마나 유사한가를 계산하여 이를 이용하는 기법을 제안하였다. 이러한 문장-질의 유사도를 성숙된 자연어 처리 기술 없이 근사적으로 계산하는 방법을 소개하였다. 그리고 이계산 작업은 문서 수의 증가에 선형적인 계산량의 증가를 가져 옴을 보임으로써 실용적인 대용량 시스템에서도 사용할 수 있음을 보였다. 그 다음으로 제안된 주요한 기술은 출력 문서의 순위화에 계층적인 개념을 도입하는 것이다. 이 기법을 사용함으로써 상당한 성능 향상을 이룰 수 있음을 보였다. 그 외에도 웹 문서의 특징인 하이퍼 링크 정보와 타이틀 정보를 이용하여 어느 정도의 성능 개선을 가져올 수 있음을 보였다. 이러한 기술들의 타당성을 입증하기 위해 대용량 웹 정보검색 시스템을 개발하고 실험하였다.
본 논문에서는 기존의 일반 PC 화면에 적합하도록 작성된 웹 문서를 무선 환경의 핸드헬드 계열의 소형 단말기 화면에서도 효율적으로 표현되어지도록 변환하는 기법을 제시한다. 이는 선행 연구에서 나타나는 단순한 텍스트 위주의 추출 및 요약 형식의 변환과는 달리, 시각적인 분리에 근거한 내용 블록 단위를 설정하고 이를 기본으로 변환을 수행함으로써 보다 정확한 변환 결과를 얻으며, 내용 블록 단위들의 재배치와 새로운 인덱스 형식의 재표현을 통하여 편리한 인터페이스로 좌우스크롤 없는 웹 문서를 제공한다 이를 위하여 본 논문에서는 Layout-Forming Tag Analysis Algorithm과 Component Grouping Algorithm을 사용하여 시각적 표현을 주도하는 태그 정보에 대한 구조적인 분석 및 내용 블록 단위의 추출을 시도하고, 분리된 블록들의 분류와 재구성 및 인덱스 생성 과정을 통하여 소형 단말에 적합한 웹 문서를 생성한다. 웹문서 변환 시스템은 프락시 서버에서 동작하도록 설계되었고, 프로토타입의 구현을 통하여 제시하는 변환 기법을 평가하였다. 실제 웹 문서에 대한 검증 과정을 거쳤고, 복잡한 구조의 웹 문서에 대해 적합한 변환 결과를 보였다.
주가지수는 한 국가의 경제 지표뿐만 아니라 투자판단의 지표로도 활용되므로 이를 예측하는 연구가 지속해서 진행되고 있다. 주가지수 예측을 하는 작업은 기술적, 경제적 및 심리적 요인 등이 반영된 것으로 예측의 정확도를 위해서는 복합적 요인을 고려해야 한다. 따라서 지수의 변동에 영향을 미치는 요인들을 선별하여 반영한 주가지수 예측모델연구가 필요하다. 이와 관련한 기존 연구에서는 시장의 변동을 만들어 내는 뉴스 정보 또는 거시 경제 지표를 각각 이용하거나, 몇 가지의 지표 조합만을 반영한 예측 연구가 대부분이었다. 따라서 본 연구에서는 미국 다우존스지수 예측을 위해 뉴스 정보의 감성 분석과 다양한 거시경제지표를 고려하여 효과적인 지표 조합을 제시하고자 한다. 뉴스 정보의 감성 분석은 최신 자연어처리 기법인 BERT와 NLTK VADER를 사용하고, 예측모델은 주가예측모델로 적합하다고 알려진 딥러닝 예측모델 LSTM을 적용하여 가장 효과적인 지표 조합을 제시했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.