• Title/Summary/Keyword: Text network

Search Result 1,135, Processing Time 0.029 seconds

Detect H1TP Tunnels Using Support Vector Machines (SVM을 이용한 HTTP 터널링 검출)

  • He, Dengke;Nyang, Dae-Hun;Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.45-56
    • /
    • 2011
  • Hyper Text Transfer Protocol(HTTP) is widely used in nearly every network when people access web pages, therefore HTTP traffic is usually allowed by local security policies to pass though firewalls and other gateway security devices without examination. However this characteristic can be used by malicious people. With the help of HTTP tunnel applications, malicious people can transmit data within HTTP in order to circumvent local security policies. Thus it is quite important to distinguish between regular HTTP traffic and tunneled HTTP traffic. Our work of HTTP tunnel detection is based on Support Vector Machines. The experimental results show the high accuracy of HTTP tunnel detection. Moreover, being trained once, our work of HTTP tunnel detection can be applied to other places without training any more.

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

A Study on the Consumer Perception and Keyword Analysis of Meal-kit Using Big Data

  • Jung, Sunmi;Ryu, Gihwan;Lim, Jeongsook;Kim, Heeyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.206-211
    • /
    • 2022
  • As the level of consumption is improved and cultural life is pursued, the consumer's consciousness structure is rapidly changing, and the demand for product selection level, variety, and quality is becoming more diverse. The restaurant economy is falling due to the prolonged COVID-19, the economic recession, income decline, and changes in population structure and lifestyle, but the Meal- kit market is growing rapidly. This study aims to identify the consumer perception of Meal-kit, which is rapidly growing as an alternative to existing meals in the fields of dining out, food, and distribution due to the development of technology and social environment using big data. As a result of the analysis, the keywords with the highest frequency of appearance were in the order of Meal-kit, Cooking, Product, Launching, and Market and were divided into 8 groups through the CONCOR analysis. We want to identify consumer trends related to the key keywords of Meal-kit, present effective data related to Meal-kit demand for Meal-kit specialized companies, and provide implications for establishing marketing strategies for differentiated competitive advantage.

Delivering Augmented Information in a Session Initiation Protocol-Based Video Telephony Using Real-Time AR

  • Jang, Sung-Bong;Ko, Young-Woong
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Online video telephony systems have been increasingly used in several industrial areas because of coronavirus disease 2019 (COVID-19) spread. The existing session initiation protocol (SIP)-based video call system is being usefully utilized, however, there is a limitation that it is very inconvenient for users to transmit additional information during conversation to the other party in real time. To overcome this problem, an enhanced scheme is presented based on augmented real-time reality (AR). In this scheme, augmented information is automatically searched from the Internet and displayed on the user's device during video telephony. The proposed approach was qualitatively evaluated by comparing it with other conferencing systems. Furthermore, to evaluate the feasibility of the approach, we implemented a simple network application that can generate SIP call requests and answer with AR object pre-fetching. Using this application, the call setup time was measured and compared between the original SIP and pre-fetching schemes. The advantage of this approach is that it can increase the convenience of a user's mobile phone by providing a way to automatically deliver the required text or images to the receiving side.

How to Implement Successful Virtual Desktop Infrastructure (VDI) in the Manufacturing Sector

  • KIM, Tae-Hi
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.10
    • /
    • pp.15-22
    • /
    • 2022
  • Purpose: In the manufacturing sector, VDI (Virtual Desktop Infrastructure) offers advantages to the organizations, such as allowing manufacturers access to the system from any location. The most important things are understanding what the user needs, avoiding under-provisioning, network preparation. This research is to provide useful practical l implementations of VDI in manufacturing industry based on numerous prior studies. Research design, data and methodology: This research has conducted the qualitative content analysis (QCA). When conducting this research, the present author assumed that it is crucial to create the procedures and processes that will be used to acquire the text data needed to structure or solve problems. Results: According to the prior literature analysis, there are five suggestions to implement successful VDI for manufacturing sector. The five solutions are (1) Creation of the machines, (2) Direct users to an available 'Virtual Machine', (3) 'Virtual Machine Power Management', (4) Performance monitoring, and (5) Review security. Conclusions: The research clearly details how VDI can be implemented on a manufacturer platform and how it can be connected to hundreds of users. The author can conclude that connecting hundreds of users can be done using the remote connection of devices and encourage manufacturers to work from different areas.

A Study on the Awareness of Artificial Intelligence Development Ethics based on Social Big Data (소셜 빅데이터 기반 인공지능 개발윤리 인식 분석)

  • Kim, Marie;Park, Seoha;Roh, Seungkook
    • Journal of Engineering Education Research
    • /
    • v.25 no.3
    • /
    • pp.35-44
    • /
    • 2022
  • Artificial intelligence is a core technology in the era of digital transformation, and as the technology level is advanced and used in various industries, its influence is growing in various fields, including social, ethical and legal issues. Therefore, it is time to raise social awareness on ethics of artificial intelligence as a prevention measure as well as improvement of laws and institutional systems related to artificial intelligence development. In this study, we analyzed unstructured data, typically text, such as online news articles and comments to confirm the degree of social awareness on ethics of artificial intelligence development. The analysis showed that the public intended to concentrate on specific issues such as "Human," "Robot," and "President" in 2018 to 2019, while the public has been interested in the use of personal information and gender conflics in 2020 to 2021.

Analysis of Infertility Keywords in the Largest Domestic Mom Cafe Bulletin Board in Korea Using Text Mining

  • Sangmin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • The purpose of this study is to examine consumers' perceptions of domestic infertility support policies based on infertility-related keywords and the trends of their changes. To this end, Momsholic, a mom cafe which has the most active infertility-related bulletin boards on Naver, was selected as the analysis target, and 'infertility' was selected as a keyword for data search. The data was collected for three months. In addition, network analysis and visualization were performed using R for data collection and analysis, and cross-validation was attempted using the NetDraw function of 'textom 1.0' and the UCINET6 program. As a result of the analysis, the main keywords were cost, artificial insemination, in vitro fertilization, freezing, harvest, ovulation, and how much. Next, looking at the central value of the degree of connection, it was found that the degree of connection between the words cost, cost, how much, problem, public health center, and artificial insemination was high. According to the results of this study, women who visit mom cafes due to infertility in Korea are more interested in the cost. It is believed to be closely related to infertility treatment as well as in vitro fertilization and egg freezing. Therefore, by examining keywords related toinfertility, it has academic significance in that it is possible to identify major factors that end users are interested in. Furthermore, it is possible to redefine the guidelines for domestic infertility support policies by presenting infertility support policies that reflect the factors of interest of end consumers.

Dialog-based multi-item recommendation using automatic evaluation

  • Euisok Chung;Hyun Woo Kim;Byunghyun Yoo;Ran Han;Jeongmin Yang;Hwa Jeon Song
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.277-289
    • /
    • 2024
  • In this paper, we describe a neural network-based application that recommends multiple items using dialog context input and simultaneously outputs a response sentence. Further, we describe a multi-item recommendation by specifying it as a set of clothing recommendations. For this, a multimodal fusion approach that can process both cloth-related text and images is required. We also examine achieving the requirements of downstream models using a pretrained language model. Moreover, we propose a gate-based multimodal fusion and multiprompt learning based on a pretrained language model. Specifically, we propose an automatic evaluation technique to solve the one-to-many mapping problem of multi-item recommendations. A fashion-domain multimodal dataset based on Koreans is constructed and tested. Various experimental environment settings are verified using an automatic evaluation method. The results show that our proposed method can be used to obtain confidence scores for multi-item recommendation results, which is different from traditional accuracy evaluation.

A Study on the Effective Command Delivery of Commanders Using Speech Recognition Technology (국방 분야에서 전장 소음 환경 하에 음성 인식 기술 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2024
  • Recently, speech recognition models have been advancing, accompanied by the development of various speech processing technologies to obtain high-quality data. In the defense sector, efforts are being made to integrate technologies that effectively remove noise from speech data in noisy battlefield situations and enable efficient speech recognition. This paper proposes a method for effective speech recognition in the midst of diverse noise in a battlefield scenario, allowing commanders to convey orders. The proposed method involves noise removal from noisy speech followed by text conversion using OpenAI's Whisper model. Experimental results show that the proposed method reduces the Character Error Rate (CER) by 6.17% compared to the existing method that does not remove noise. Additionally, potential applications of the proposed method in the defense are discussed.

Detecting Knowledge structures in Artificial Intelligence and Medical Healthcare with text mining

  • Hyun-A Lim;Pham Duong Thuy Vy;Jaewon Choi
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.817-837
    • /
    • 2019
  • The medical industry is rapidly evolving into a combination of artificial intelligence (AI) and ICT technology, such as mobile health, wireless medical, telemedicine and precision medical care. Medical artificial intelligence can be diagnosed and treated, and autonomous surgical robots can be operated. For smart medical services, data such as medical information and personal medical information are needed. AI is being developed to integrate with companies such as Google, Facebook, IBM and others in the health care field. Telemedicine services are also becoming available. However, security issues of medical information for smart medical industry are becoming important. It can have a devastating impact on life through hacking of medical devices through vulnerable areas. Research on medical information is proceeding on the necessity of privacy and privacy protection. However, there is a lack of research on the practical measures for protecting medical information and the seriousness of security threats. Therefore, in this study, we want to confirm the research trend by collecting data related to medical information in recent 5 years. In this study, smart medical related papers from 2014 to 2018 were collected using smart medical topics, and the medical information papers were rearranged based on this. Research trend analysis uses topic modeling technique for topic information. The result constructs topic network based on relation of topics and grasps main trend through topic.