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ABSTRACT

Hyper Text Transfer Protocol(HTTP) is widely used in nearly every network when people access web pages, therefore
HTTP traffic is usually allowed by local security policies to pass though firewalls and other gateway security devices without
examination. However this characteristic can be used by malicious people. With the help of HTTP tunnel applications,
malicious people can transmit data within HTTP in order to circumvent local security policies. Thus it is quite important to
distinguish between regular HTTP traffic and tunneled HTTP traffic. Our work of HTTP tunnel detection is based on Support
Vector Machines. The experimental results show the high accuracy of HTTP tunnel detection. Moreover, being trained once,
our work of HTTP tunnel detection can be applied to other places without training any more.

Keywords: HTTP tunnels, site independent, traffic classification, SVM

|. Introduction

Modern network security environment is
like this: a firewall is installed in the net-
work boundary checking network connec-
tions. If the port of the connection is not al-
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lowed by network administrator, then the
firewall will block the network connection
targeting on this port. In a network, an
Intrusion Detection System (IDS) is prob-
ably used to detect possible attacks by
checking the payloads of network packets.
If one packet payload contains the sig-
nature matching IDS rules, then alert or
action might be taken.

Normally web browsing is a common be-
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havior within a local network, which is al-
lowed by network administrators. HTTP is
the protocol widely used for web browsing.
Hypertext Protocol  Secure
(HTTPS) is also used for browsing web pa-
ges, but so few web pages need HTTPS in
comparison with HTTP. Therefore, HTTP is
normally allowed by firewall. IDS may also
checks the payload of HTTP traffic to see if
there is something abnormal.

Transfer

This security environment however, can
be easily broken by several techniques. For
example, file sharing applications (eMule/
eDonkey etc.) disguise their traffic as
HTTP traffic in order to pass the examina-
tion of firewall and IDS. Tunnel technique
is another big thread to this security
environment. DNS tunnel(i] and HTTP
tunnel(21{3) are two typical tunnel techni-
ques making use of the character of this se-
curity environment. By encapsulating ap-
plication data into protocols allowed by se-
curity policies, any applications using tun-
nel techniques could work properly even if
they are actually forbidden by the security
policies.

However, HTTP tunnels could be recog-
nized using statistical methods because
regular HTTP traffic have different stat-
istical characteristics with tunneled traffic.
Suppose a user is chatting using tunneled
instant messaging. The chatting behavior,
which includes sending short messages and
receiving short messages is quite different
from web browsing, which includes sending
short messages and receiving long messages.

Since applications have different behav-
iors, we proposed a HTTP tunnel detection
method based on statistical mechanism.
The proposed method is site independent,
which means there is only one training
time. Once being trained, this method can
be applied to any other sites without fur-
ther training. Besides, the proposed method

achieves a high accuracy, mostly 99%.

The rest of this paper is organized as
follows. Related work are discussed in
Section 2, then in Section 3 we describe the
datasets we used. In Section 4 we describe
how SVM works and how we set our classi-
fication parameters. Detailed classification
process are presented in Section 5 and clas-
sification results are discussed in Section 6.
Finally we conclude in Section 7.

Il. Related Work

Serving a very long time historically, port
based IP traffic classification is based on
registered port numbers in Internet
Assigned Numbers Authority (IANA)(4). IP
traffic are classified by their port numbers
into different applications, e.g. port 80 for
HTTP. This classification method is simple
but quite unreliable. The reasons are that
not every application has its registered
port, and not every application follows its
registered port. For example peer to peer
applications may use port 80 to transmit
data. Madhukar and Williamson(5] ob-
served that port based classification is not
able to identify 30-70% of Internet traffic
they investigated. This method is unable to
detect HTTP tunnels since HTTP tunnels
are using HTTP port as the transmit port.

To overcome the flaw of port based traf-
fic classification, payload based IP traffic
classification was proposed. Payload based
IP traffic classification inspects payload of
traffic to see if there is a match between
examined payload and its own signature
database. Many IDS such as Bro{6](7] and
Snort{8] are using this approach. Several
research works also wused this ap-
proach{9)(10)(111(12]). Since payload based
IP traffic classification depends on its sig-
nature database, the biggest disadvantage
is that it should maintain an up-to-date
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signature database, otherwise its classi-
fication ability will decrease. Another prob-
lem payload based IP traffic classification
meets is that it must inspect the traffic
payload which is against users privacy. In
some areas, inspecting payload is against
the law. The third problem of payload
based IP traffic classification is that it
needs high computational power since it
performs deep inspection of large number of
network traffic. This classification method
could detect some HTTP tunnels using
plain text, such as Telnet, but its detection
on encrypted HTTP tunnels. such as in-
stant messaging is doubtable.

Statistical based traffic classification is
an alternative to payload based traffic
classification. This approach relies on stat-
istical properties of network traffic. It is
believed that applications have different
characteristics in network traffic features,
such as flow duration, packet size, in-
ter-arrival time, etc. By analysis these fea-
tures statistically, different applications
could be classified. This approach needs
training phase and classification phase. In
training phase, training samples are used
to feed the classification algorithm in order
to establish the classification model. As
soon as the classification model is estab-
lished, the classification can be performed.
Paxson(13] noticed the relationship be-
tween the class of traffic and its observed
statistical properties. Roughan et al.[14)
proposed to map different network applica-
tions to predetermined QoS traffic classes
using the Nearest Neighbors (NN), Linear
Discriminate Analysis (LDA) and Quadratic
Diseriminant Analysis (QDA) algorithms.
Erman et al.(15] presented a semisuper-
vised traffic classification method which
combines supervised and unsupervised ap-
proaches. In 2007 Erman et al.(16] pro-
posed an approach to identify Web and

peer-to-peer traffic of network core using
K-means. Their research is mainly about how
to distinguish HTTP traffic and peer—to-peer
traffic, not targeting on HTTP tunnels. S.
Kaoprakhon and V. Visoottiviseth{17) pro-
posed a combination of signature based and
behavior based approach to distinguish be-
tween normal HTTP traffic and audio/video
traffic. They got a good experimental re-
sults, but still not aiming at HTTP tunnels.

M. Crotti et al.[18] presented a stat-
istical fingerprints approach to distinguish
between HTTP and HTTP tunnels. But
their approach faces the problem of site de-
pendence, which means if their method
moves to another place, it should be trained
again in order to adapt to local environment.
Their fingerprints method works in this
way:

They extracted packet size, packet order
and inter-arrival time as classification fea-
tures to build a vector of Probability
Density Functions (PDF). These PDFs are
called Protocol Fingerprints. Elements in
PDF are {s,at,} pairs, where s; is the size
of the i~th packet and At, represents the in-
ter-arrival time between the i-th packet
and the preceding one.

During the training phase, such PDFs
are established. While in the classification
phase, they computed the probability of
each packet in one session falling on the
popular area of the fingerprints. If every
packet falls on the popular regions of each
PDFs, then they congider this session is
normal. Otherwise it is HTTP tunnel
session.

But this method has location restriction.
Their other works on tunnel detection(19){20]
face the same problem.

{1l. Date Collection

In order to prove our method is site in-
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(Figure 1) Data Collection Environment

dependent on HTTP tunnel detection, we
collected data from six different places. The
collection environment is like (Figure 1).

There are two tunnel servers in our ex-
periments, one in each country, China and
Korea. We used computers with public IP
addresses as tunnel servers. We tried to
simulate the real tunnel environment.
Suppose there is a user who wants to tun-
nel his mail data in HTTP from his com-
pany, he would like to set his home com-
puter as the tunnel server which is nor-
mally not far from his company. In other
words, his tunnel server is in his own
country. Thus, we set two tunnel servers
and let each country’s tunnel clients con-
nect to local tunnel servers.

There are six tunnel clients, three in
China, Henan Province (CHHEN), Sichuan
Province (CHSIC) and Jiangsu Province
(CHJIA). The other three tunnel clients are
in Korea, Incheon City (KOINC), Seoul City
(KOSEO) and Suwon City (KOSUW). We
let friends in these six locations run HTTP
tunnel client program on their computers.
Tunnel clients connect with tunnel servers

(Table 1} Training Datasets

Location Ttem Size (MB) | Packets | Sessions
HTTP 202 | 439,022 15,818

~ Tunneled SMTP 168 | 479,808 1,831
KOINC Tunneled POP 52| 153040 | 871
Tunneled Telnet 12| 91,211 93

(Table 2) Test Datasets

Location Ttem Size (MB] | Packets | Sessions
HTTP 306 | 435,772 | 15,781

e~ yare Tunneled SMTP 30 | 107,966 478
KOINC Tuanncled POP 34 | 146,574 1,078
Tunneled Telnet 23 | 172935 245

HTTP 311 | 428,184 8,925

5 Tunneled SMTP 68 | 214,753 1,831
KOSEO Tunncled POP 66 | 186970 | 1441
Tunneled Telnet 3| 29871 93

HTTP 114 | 178,781 4,929

ar Tunneled SMTP 56 | 240,610 1,142
Kostw Tunmeled POP 50| 238533 | 1587
Tunneled Telnet 16 | 98,063 200

HTTP 446 | 117,659 3.883

R Tuuneled SMTP 44 | 194,164 824
CHHEN Tumneled POP 66 | 42,882 1,281
T ted Telnet 21 | 138,351 192

HTTP 201 | 435857 | 15,793

CHSIC Tummeled SMTP 30 | 118802 842
Tunneled POP 28 | 497,263 580

Tunneled Telnet 13| 87,388 118

HTTP 225 | 366,860 2,975

CHHA Tunneled SMTP 84 | 370,282 1,203
Tunneled POP &0 | 273699 1,587

Tunneled Telnet 13| 86,025 155

that will connect with the real mail servers
and telnet servers when receiving data re-
quest from tunnel clients.

During one week, our friends in six loca-
tions accessed HTTP web pages, sent and
received mails using different mail accounts
and obtained telnet service from different
telnet servers through tunneled HTTP. At
the same time, an open network flow re-
cording tool Wireshark(21] was running on
their computers to capture HTTP data as
well as tunneled HTTP data.

In order to guarantee that we collected
the real HTTP data and the real tunneled
HTTP data, we let our friends do the ex-
periments manually. For example, to collect
HTTP data, they first started Wireshark,
set capture filter to 'port 80", then started
web browser to access web pages. Moreover,
we used different ports for different tun-
neled service, e.g. port 2500 for SMTP tun-
nel, port 11000 for POP tunnel, so we know
if we capture traffic in these ports, we will
get pure tunneled HTTP data.

These data provide our training datasets
and test datasets, as shows in [Table 1]
and [Table 2]. Our training datasets are
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from Incheon, Korea (KOINC), having 292 subject to

MB HTTP data, 439,022 packets and 15,818
sessions. Tunneled SMTP data are 168 MB,
479,808 packets and 1,831 sessions. There are
52 MB, 153,049 packets, 871 sessions, and 12
MB, 91,211 packets, 93 sessions for tunneled
POP and tunneled Telnet respectively.

There are two terms should be explained
here: packet and session. When we say
packet, it is a TCP packet with Ethernet
part, IP part, TCP part and maybe payload.
A session is a transmission unit starting by
the TCP three-way handshake ending by
the FIN or RST packets. In our experiment,
we tested how many sessions were correctly
recognized.

IV. Support Vector Machines

Support Vector Machines (SVM) are a set
of related supervised learning methods
which analyze data and recognize patterns,
used for statistical classification and re-
gression analysis. Since an SVM is a classi-
fier, then given a set of training examples,
each marked as belonging to one of two cat-
egories, an SVM training algorithm builds a
model that predicts whether a new example
falls into one category or the other.
Intuitively, an SVM model is a representa-
tion of the examples as points in space,
mapped so that the examples of the sepa-
rate categories are divided by a clear gap
that is as wide as possible. New examples
are then mapped into that same space and
predicted to belong to a category based on
which side of the gap they fall on(22].

Given a training set of instance-label pairs
(z,9,),i=1,...,1 where z,€R" and ye1,-1,
SVMs require the solution of the following
optimization problem:

1 !
min(w’b‘g) EwTer CEQ
i=1

y, (W' () +b) > 1—£,6 20

Here training vectors $x_i$ are mapped
into a higher (maybe infinite) dimensional
space by the function ¢. SVM finds a linear
separating hyperplane with the maximal
margin in this higher dimensional space.
C>0 is the penalty parameter of the error
term. Furthermore, Klz,z,)= () d(z,) is
called the kernel function. There are four
basic kernels as below:

* Linear: K(z, z,)= 1z,

+ Polynomial: Klz; z,)= (ya/z;+7r)%v>0

» Radial Basis Function (RBF):

K(zi,xj):exp(—'yﬂzi*xj\|2),fy>0

» Sigmoid: K(z; z;)=tanh(yz/z,+r)

Here, ~r, and d are kernel parameters.

In our experiment, we used Radial Basis
Function (RBF) as kernel because of its
different
applications. When using RBF kernel, two

good performance shown in
parameters C and v must be carefully chos-
en, as SVM classification accuracy depends
on these two parameters.

We used libsvm(23]) to get the best (G~
values as (128, 0.5) with prediction accu-
racy of 99.9283% on training dataset
KOINC as shows in [Figure 2].

Therefore in the following experiments,
we also used parameters ¢=128 and v= 0.5.

Best log2(C) = 7 Iog2{gamma) = - accuracy = 93.9283% 985 e
8 :

=128 gamma =05 3 loglgamma)

5 1 15
fog2(C}

(Figure 2) Kernel Function Parameters Selection
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V. Classification of HTTP Tunnels
5.1 HTTP Tunnel Mechanism

HTTP tunnel is a technigue that other
protocols are wrapped up by HTTP in order
to circumvent local security policies.

Some networks define strict access poli-
cies to enhance local network security, such
as block port 1863 to limit instant chat,
block port 25 to limit mail sending. etc.
While in most networks web browsing is al-
lowed, which means port 80 is not blocked
by security policy. In order to use other ap-
plications that are blocked by local security
policies, HTTP tunnel was invented.

Data of other applications could be wrap-
ped up by HTTP to disguise as normal
HTTP data. By doing this, these data could
pass examination of security devices usually
locating in the boundary of the network.

HTTP tunnel technique normally contains
two parts, tunnel client and tunnel server.
The tunnel client wraps application data
into HTTP data, and then sends data to the
tunnel server. The tunnel server unwraps
the received HTTP data into normal appli-
cation data and then sends the data to the
real destination. The tunnel server acts as
a proxy server between the application and
the real destination. When the tunnel serv-
er receives any data from the real destina-
tion, it does the similar thing as the tunnel
client.

(Figure 3) shows an example of GNU
HTTP tunnel(2) for SMTP. The following
instructions might establish such tunnel:

! el [ Tummet [ SMTP |

| Client Server j Server |

— § ~———— T i
SMTP : fo Dl A S e S ;
Oent | T [porzs] -] | hi ~ [Fon :
AT s T T
iR e " s ;

Firewalt or other
gateway device

(Figure 3) GNU HTTP Tunnel for SMTP

htc.exe -F 25 tunnel_server:80

hts.exe -F smtp_server:25 80

The first instruction sets the listening
port (port 25) of the tunnel client and its
forwarding address (tunnel_server:80). Any
data received from port 25 will be for-
warded to tunnel_server:80. The second in-
struction tells the tunnel server te listen on
port 80, and forward data to smtp_serv-
er:25,

The tunnel client htc listens on TCP port
25 which is used to communicate with
SMTP client. Any data from SMTP client
will be encapsulated into HTTP data by
tunnel client, and then send to tunnel serv-
er, i.e. tunnel_server:80.

Since the encapsulated data are much
like regular HTTP data at first glance: with
HTTP 'GET'/'POST’ request, with HTTP
response, and using port 80, firewall or oth-
er gateway security devices would let them
pass according to the policies.

When the tunnel server hts receives the
encapsulated data, it performs decap-
sulation to get the original SMTP data.
Then it communicates with the real SMTP
server. Any data from real SMTP server
would be wrapped up into HTTP data and
then sent back through the tunnel between
the tunnel client and the tunnel server.

After the tunnel client gets data from the
tunnel, it decapsulates the data and sends
to SMTP client.

Usually the tunnel client htc runs on lo-
cal user’s machine, the tunnel server hts
runs on a machine outside the local net-
work, a computer with a public IP address
at home, for example.

5.2 Classification Features Selection

Our classification features are chosen
based on the observation of {Figure 4], the
difference between a typical HTTP session
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Client Server Client Server
«—DATA | 1410 | PSH—
- GET | 1253 | PSH—> g’ 1]PSH——
e fg ] PR
——{LEFT} 1 1] PSH—>
«—DATA 1 630 PSH—

e SQUITY E 1 PSH—s

«~HITP OK | 1514 | PSH—

«HTTPcont’ {460 |PSH—

Typical HTTP Session Typical Tehnet Session

(Figure 4) Typical Sessions of HTTP and Teinet

and a Telnet session. In (Figure 4] we omit
the control packets, such as SYN, ACK,
FIN, RST packets etc., because they are re-
lated to TCP transmission instead of appli-
cation. In our method, we only consider
packets with payload.

In a typical HTTP session, the client first
sends a HTTP 'GET" or 'POST’ request
packet, usually with a large payload. more
than 100 bytes and with a PUSH flag.
According to TCP RFC[24], the PUSH flag
of a packet indicates that the receiver must
not wait for more data from the sender and
process the buffered data immediately.
After receiving the client’s request, the
server will respond with requested HTTP
data. Normally several large packets with
PUSH flags will be sent back to the client.

In a typical Telnet session, the server
first sends welcome information to the cli—
ent, then the client authenticates himself
with user name and password. Every char-
acter the client types will send back to the
client in order to display on the client’s
screen. After authenticate successfully the
client sends commands to the server, and
gets responses. Normally the response
packets from the server are larger than the
command packets from the client. Most of
the packets in a Telnet session have PUSH
flags.

Through above analysis we can find that
a HTTP session is quite different from a
Telnet session in the numbers of PUSH
packets, packet size and packet numbers.

{(Figure 5] Number of PUSH Packets from Client
to Server

ST %

s B % oo EX LI
ol 4 *

R e

783

(Figure 6(a)) Minimal Packet Length from
Client to Server

(Figure 6(b)} Packet Numbers from Client to
Server

The similar situation happens to SMTP and
POP sessions. We could also demonstrate
this peint through 2D scatter plot graphs
{(Figure 5) and [Figure 6}). These graphs
are from KOINC training data.

From [Figure 5) we could see that PUSH
numbers of normal HTTP session are scat-
tered in the area of (1, 30). For instance,
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one HTTP session has 20 PUSH packets,
while another HTTP session may has just 2
PUSH packets. In overall, these PUSH
numbers are probably confined in the area
of 1 to 30.

POP data are mainly scattered in (30,
60), and SMTP in (60, 80). While Telnet are
spread between 140 and 311.

(Figure 6(a)} and (Figure 6(b)) show the
scattered plots of the minimal packets
length and packet numbers respectively.
From these figures we could also find that
HTTP has differences in packet length and
numbers with HTTP tunnels.

Therefore, the number of PUSH packets,
packet length and packet numbers of both
client/server and server/client directions
are selected as our classification features.
[Table 3) shows the total 16 features we
used in our method.

5.3 Classifier Accuracy Comparison

Except SVM, we also tried three other
classifiers: ZeroR, Naive Bayes and Ada-
Boost on test datasets of Incheon City,
Korea (KOINC).

ZeroR or 0-R classifier belongs to rule
classifier. In rule classifier, different rules
are applied to different attributes, and
based on these rules an output is chosen.
The ZeroR classifier takes a look at the tar-
get attribute and will always output the

(Table 3) Classification Features

ID | Feature M

1| s push numbers Number of push packets From client to server

2 | se_pushmmmbers Number of push packets frow server to client

3} es pushratio Ratio of e push_numbers and s_c_push_numbers
4 | s packet numbers Number of packets from client to server

5 | s.c_packet_tumbers Number of packets from server to client

&

7

cs.packets_ratio Ratio of c_s_packei_numbers and s_c_packet_numbers
csanin_packet Jength The miniial packet length from client to server
8 | cs_max packet_length The maximal packet length from client to server

9 | csaean_packet dength | The mean packet length from client to sorver

16 | cs.packet length stddev | The standard deviation of packet length from client to server
11 | estotal length The total packet length from client to server

12 | s_c_min_packet Jength ‘The minimal packet length from server to client

13 | s.cmax packet Jength | The maximal packet length from server to elient

14 | s.cnean packet length | The mean packet length from server to elient

15 | s.c.packet length stddev | The standard deviation of packet length from server to client
16 | sctotal length The total packet length From server to client

(Table 4) Classifier Accuracy and Training Time

Classifier ZeroR | Naive Bayes | SVM AdaBoost
Accuracy 28.99% | 95.36% 97.97% | 57.97%
Training Time | 0.23s 0.12¢ 0.158 0.31s

value that is commonly found in that col-
umn(25). It predicts the test data's ma-
jority class (if nominal) or average value (if
numeric) (26).

Naive Bayes is based on applying Bayes’
theorem with strong independence
assumptions. It assumes that the presence
(or absence) of a particular feature of a
class is unrelated to the presence (or ab-
sence) of any other feature. This classi-
fication method analyzes the relationship
between instance of each class and each at-
tributes to get a conditional probability for
the relationship between the attributes and
the class. An advantage of Naive Bayes
classifier is that it requires a small amount
of training data to estimate the parameters
(means and variances of the variables) nec-
essary for classification. More information
can be found in (27).

AdaBoost or Adaptive Boosting is a
meta-algorithm which be wused in con-
junction with many other learning algo-
rithms to improve their performance. It in-
crementally constructs a complex classifier
by overlapping the performance of possibly
hundreds of simple classifiers using a vot-
ing scheme. AdaBoost is simple to imple-
ment and known to work well on very large
sets of features by selecting the features re-
quired for good classification(28). Detailed
information could be found in(29].

The experiment result shows as [Table
4). We found that ZeroR has the poorest
performance, only has the accuracy of
28.99%. While SVM achieves the accuracy
of 97.97%, the best performance among all
of them. Besides, SVM and Naive Bayes
have the shortest training time periods.
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However in comparison with the accuracy
performance, the 0.03 seconds’ difference
between SVM and Naive Bayes can be
ignored. Therefore, SVM was chosen as the
classifier of our method.

5.4 Training Size

We also conducted the experiment on how
many samples needed for SVM to get a high
accuracy. [Figure 7] shows the results.

From [(Figure 7] we can see that using
SVM algorithm can achieve an acceptable
results (about 96%) with 10 training sam-
ples, i.e. 10 sessions from training datasets
and a very promising results (almost 100%)
with 100 training samples. Thus, we chose
100 training samples in the following
experiments.

VI. Experimental Results

We tested six datasets from China and
Korea and got the results as showed in
(Figure 8). Most of them are quite accu-
rate, 99%, only one is below 95%. The
training dataset are from Incheon, Korea,
but the test datasets are from different lo-
cations of Korea and China. We even tried
to use KOSEO and CHSIC as our training
dataset and tested five other datasets, sim-

Accutacy (%)
ARG e

106G G-

O gt -
i 5 10 20 a0 100 Ttaining Size

[Figure 73 Accuracy of Different Training Size

ilar results have been gotien.

Accuracy %)
192

Ko xasso xosew CHAEN oS o Bataset

[Figure 8] Experimental Results
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(Figure 8] Comparison Results: HTTP and SMTP
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(Figure 10) Comparision Resuits: POP and Telnet

Therefore we conclude that our proposed
method can detect HTTP tunnels without
location restrictions, that means it is site
independent. Being trained once, the pro-
posed method could work on other sites
with high accuracy.
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We also compared our experimental re-
sults with M. Crotti et al.s Protocol
Fingerprints method (FP)(18) in (Figure 9)
and [Figure 10].

(Figure 9) shows the comparison results
between our HTTP accuracy and FP accu-
racy, as well as SMTP comparison. From
this figure we can see that when dealing
with dataset KOINC, both methods perform
quite well, achieving the accuracy about
100%. This is because the training dataset
and classification dataset are from the
same place, Incheon, Korea. It is coincident
with the experimental results of FP meth-
od(18].

When we tested both methods with data-
sets from different places, differences illus-
trated in (Figure 9). Both HTTP and SMTP
using FP method achieve the lower accu-
racy in comparison with our method with
datasets from five other places. FP accu-
racy using the five datasets besides KOINC
are around 92%, while our accuracy are
around 98%. This confirms that FP method
is location restricted and our method is not
restricted to single location.

The same situation happened when we
tested POP and Telnet using both methods.
The comparison results show in (Figure
10]. Being trained and tested with dataset
from same place, both methods get good
results. Being tested with different data-
sets, our method is s‘uperior to FP method,
except one point for Telnet in KOSUW.

VIl. Conclusion

We proposed a HTTP tunnel detection
method based on statistical mechanism. We
did experiments to train our method with
datasets from one location and test our
method with six different locations from
two nations. In comparison with the exist-
ing methods, the experimental results

showed that our proposed method is site
independent. It only needs one training
time and could be applied to other networks
without training any more. Besides, the ex-
perimental results showed that our pro-
posed method achieves high accuracy on
HTTP tunnels detection. Furthermore, since
it needs so few training samples, i.e. 100,
the training time is quite short. This gives
our proposed method another advantage of
deployment. Currently we tested our pro-
posed method offline. Online HTTP tunnel
detection would be our further work.
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