• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.029 seconds

Comparison of Neural Network Techniques for Text Data Analysis

  • Kim, Munhee;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2020
  • Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

Analysis of Xiaomi Trends Using Big Data - Based on Customer Perception at Domestic and Global - (빅데이터를 활용한 샤오미 동향분석 - 국내외 고객인식을 바탕으로 -)

  • Eunji Lee;Jaeyoung Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.2
    • /
    • pp.323-340
    • /
    • 2024
  • Purpose: The purpose of this study was to propose useful suggestions by analyzing research Xiaomi which are big data analyses, by collecting data based on Customer Perception in Textom. Methods: The collected data through scraping social media on the Textom site. And data preprocessing was performed using deleting and organizing data(text) that are duplicated, irrelevant, and where there is no meaning. The derived data were analyzed using Textom and Ucinet 6.0 with Text Analysis, WordClould, TF-IDF, Network Analysis, and Emotional analysis. Results: The results of this study are as follows; although the results of Xiaomi's text at domestic and global were similar, it was analyzed that there were perceptions of Xiaomi-related smart home products and cost-effectiveness in Korea, while in foreign countries, there were perceptions of functions and performance centered on smartphones. At domestic and global, the perception of Xiaomi was analyzed to be positive, and implications were presented based on these analysis results. Conclusion: Based on the results, if the product's performance or product competitiveness is considered to be meaningful in the market, and it is expected that there will be an opportunity to change the overall image of Chinese products.

Case Analysis of Bible Visualization based on Text Data Traits -Focused on Content, Structure, Quotation of Text- (텍스트 데이터의 특성에 따른 성경 시각화 사례 분석 -텍스트의 내용적, 구조적 특성 및 인용 정보를 중심으로-)

  • Kim, Hyoyoung;Park, Jin Wan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.83-92
    • /
    • 2013
  • Text visualization begins with understanding text itself which is material of visual expression. To visualize any text data, sufficient understanding about characteristics of the text first and the expressive approaches can be decided depending on the derived unique characteristics of the text. In this research we aimed to establish theoretical foundation about the approaches for text visualization by diverse examples of text visualization which are derived through the various characteristics of the text. To do this, we chose the 'Bible' text which is well known globally and digital data of it can be accessed easily and thus diverse text visualization examples exist and analyzed the examples of the bible text visualization. We derived the unique characteristics of text-content, structure, quotation- as criteria for analyzing and supported validity of analysis by adopting at least 2-3 examples for each criterion. In the result, we can comprehend that the goals and expressive approaches are decided depending on the unique characteristics of the Bible text. We expect to build theoretical method for choosing the materials and approaches by analyzing more diverse examples with various point of views on the basis of this research.

An Enhanced Text Mining Approach using Ensemble Algorithm for Detecting Cyber Bullying

  • Z.Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.1-6
    • /
    • 2023
  • Text mining (TM) is most widely used to process the various unstructured text documents and process the data present in the various domains. The other name for text mining is text classification. This domain is most popular in many domains such as movie reviews, product reviews on various E-commerce websites, sentiment analysis, topic modeling and cyber bullying on social media messages. Cyber-bullying is the type of abusing someone with the insulting language. Personal abusing, sexual harassment, other types of abusing come under cyber-bullying. Several existing systems are developed to detect the bullying words based on their situation in the social networking sites (SNS). SNS becomes platform for bully someone. In this paper, An Enhanced text mining approach is developed by using Ensemble Algorithm (ETMA) to solve several problems in traditional algorithms and improve the accuracy, processing time and quality of the result. ETMA is the algorithm used to analyze the bullying text within the social networking sites (SNS) such as facebook, twitter etc. The ETMA is applied on synthetic dataset collected from various data a source which consists of 5k messages belongs to bullying and non-bullying. The performance is analyzed by showing Precision, Recall, F1-Score and Accuracy.

A Study of Main Contents Extraction from Web News Pages based on XPath Analysis

  • Sun, Bok-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2015
  • Although data on the internet can be used in various fields such as source of data of IR(Information Retrieval), Data mining and knowledge information servece, and contains a lot of unnecessary information. The removal of the unnecessary data is a problem to be solved prior to the study of the knowledge-based information service that is based on the data of the web page, in this paper, we solve the problem through the implementation of XTractor(XPath Extractor). Since XPath is used to navigate the attribute data and the data elements in the XML document, the XPath analysis to be carried out through the XTractor. XTractor Extracts main text by html parsing, XPath grouping and detecting the XPath contains the main data. The result, the recognition and precision rate are showed in 97.9%, 93.9%, except for a few cases in a large amount of experimental data and it was confirmed that it is possible to properly extract the main text of the news.

Text summarization of dialogue based on BERT

  • Nam, Wongyung;Lee, Jisoo;Jang, Beakcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.41-47
    • /
    • 2022
  • In this paper, we propose how to implement text summaries for colloquial data that are not clearly organized. For this study, SAMSum data, which is colloquial data, was used, and the BERTSumExtAbs model proposed in the previous study of the automatic summary model was applied. More than 70% of the SAMSum dataset consists of conversations between two people, and the remaining 30% consists of conversations between three or more people. As a result, by applying the automatic text summarization model to colloquial data, a result of 42.43 or higher was derived in the ROUGE Score R-1. In addition, a high score of 45.81 was derived by fine-tuning the BERTSum model, which was previously proposed as a text summarization model. Through this study, the performance of colloquial generation summary has been proven, and it is hoped that the computer will understand human natural language as it is and be used as basic data to solve various tasks.

Korean Consumers' Political Consumption of Japanese Fashion Products (국내 소비자의 일본 패션제품에 대한 정치적 소비 연구)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.295-309
    • /
    • 2020
  • In 2019, Japan announced trade regulations against Korean products; consequently, the sales of Japanese products in Korea dropped due to a Korean consumers' boycott. This study measured the Korean consumers' political consumption behavior toward Japanese fashion products. Unstructured text data from online media sources and consumer posted sources such as blog and SNS were collected. Text mining techniques and semantic network analysis were used to process unstructured data. This study used text mining techniques and semantic network analysis to process data. The results identified boycotting Japanese fashion products and buycotting alternative products and Korean brands due to consumers' political consumption. Two brand cases were investigated in detail. Online text data before and after the political action were compared and significant changes in consumption as well as emotional expressions were identified. Product related industry sectors were identified in terms of the political consumption of fashion: liquor, automobile and tourism industry sectors were closely linked to the fashion sector in terms of boycotting. More "boycott" and "buycott" fashion brands (reflected in consumer attitudes and feelings) were detected in consumer driven texts than in media driven sources.

Incorporating BERT-based NLP and Transformer for An Ensemble Model and its Application to Personal Credit Prediction

  • Sophot Ky;Ju-Hong Lee;Kwangtek Na
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2024
  • Tree-based algorithms have been the dominant methods used build a prediction model for tabular data. This also includes personal credit data. However, they are limited to compatibility with categorical and numerical data only, and also do not capture information of the relationship between other features. In this work, we proposed an ensemble model using the Transformer architecture that includes text features and harness the self-attention mechanism to tackle the feature relationships limitation. We describe a text formatter module, that converts the original tabular data into sentence data that is fed into FinBERT along with other text features. Furthermore, we employed FT-Transformer that train with the original tabular data. We evaluate this multi-modal approach with two popular tree-based algorithms known as, Random Forest and Extreme Gradient Boosting, XGBoost and TabTransformer. Our proposed method shows superior Default Recall, F1 score and AUC results across two public data sets. Our results are significant for financial institutions to reduce the risk of financial loss regarding defaulters.

A Study on Word Cloud Techniques for Analysis of Unstructured Text Data (비정형 텍스트 테이터 분석을 위한 워드클라우드 기법에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.715-720
    • /
    • 2020
  • In Big data analysis, text data is mostly unstructured and large-capacity, so analysis was difficult because analysis techniques were not established. Therefore, this study was conducted for the possibility of commercialization through verification of usefulness and problems when applying the big data word cloud technique, one of the text data analysis techniques. In this paper, the limitations and problems of this technique are derived through visualization analysis of the "President UN Speech" using the R program word cloud technique. In addition, by proposing an improved model to solve this problem, an efficient method for practical application of the word cloud technique is proposed.