KIPS Transactions on Software and Data Engineering
/
v.3
no.4
/
pp.149-154
/
2014
A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.
Journal of Information Science Theory and Practice
/
v.6
no.4
/
pp.28-38
/
2018
Wikipedia is composed of millions of articles, each of which explains a particular entity with various languages in the real world. Since the articles are contributed and edited by a large population of diverse experts with no specific authority, Wikipedia can be seen as a naturally occurring body of human knowledge. In this paper, we propose a method to automatically identify key entities and relations in Wikipedia articles, which can be used for automatic ontology construction. Compared to previous approaches to entity and relation extraction and/or identification from text, our goal is to capture naturally occurring entities and relations from Wikipedia while minimizing artificiality often introduced at the stages of constructing training and testing data. The titles of the articles and anchored phrases in their text are regarded as entities, and their types are automatically classified with minimal training. We attempt to automatically detect and identify possible relations among the entities based on clustering without training data, as opposed to the relation extraction approach that focuses on improvement of accuracy in selecting one of the several target relations for a given pair of entities. While the relation extraction approach with supervised learning requires a significant amount of annotation efforts for a predefined set of relations, our approach attempts to discover relations as they occur naturally. Unlike other unsupervised relation identification work where evaluation of automatically identified relations is done with the correct relations determined a priori by human judges, we attempted to evaluate appropriateness of the naturally occurring clusters of relations involving person-artifact and person-organization entities and their relation names.
This article reports an attempt to perform a similarity analysis on a collection of 25 culinary manuscripts in Chosun periods using a set of quantitative text analysis methods. Historical culinary texts are valuable resources for linguistic, historic, and cultural studies. We consider the similarity of two texts as the distributional similarities of the functional components of the texts. In the case of culinary texts, text elements such as food names, cooking methods, and ingredients are regarded as functional components. We derive the similarity information from the distributional characteristics of the two key functional components, cooking methods and ingredients. The results are also quantified and visualized to achieve a better understanding of the properties of the individual texts and the collection of the texts as a whole.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.5
/
pp.1891-1908
/
2021
Cyber deception defense mitigates Advanced Persistent Threats (APTs) with deploying deceptive entities, such as the Honeyfile. The Honeyfile distracts attackers from valuable digital documents and attracts unauthorized access by deliberately exposing fake content. The effectiveness of distraction and trap lies in the enticement of fake content. However, existing studies on the Honeyfile focus less on this perspective. In this work, we seek to improve the enticement of fake text content through enhancing its readability, indistinguishability, and believability. Hence, an enticing deceptive-content generator, EDGE, is presented. The EDGE is constructed with three steps: extracting key concepts with a semantics-aware K-means clustering algorithm, searching for candidate deceptive concepts within the Word2Vec model, and generating deceptive text content under the Integrated Readability Index (IR). Furthermore, the readability and believability performance analyses are undertaken. The experimental results show that EDGE generates indistinguishable deceptive text content without decreasing readability. In all, EDGE proves effective to generate enticing deceptive text content as deception defense against APTs.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.3
/
pp.90-99
/
2016
Forecasting of box office performance after a film release is very important, from the viewpoint of increase profitability by reducing the production cost and the marketing cost. Analysis of psychological factors such as word-of-mouth and expert assessment is essential, but hard to perform due to the difficulties of data collection. Information technology such as web crawling and text mining can help to overcome this situation. For effective text mining, categorization of objects is required. In this perspective, the objective of this study is to provide a framework for classifying films according to their characteristics. Data including psychological factors are collected from Web sites using the web crawling. A clustering analysis is conducted to classify films and a series of one-way ANOVA analysis are conducted to statistically verify the differences of characteristics among groups. The result of the cluster analysis based on the review and revenues shows that the films can be categorized into four distinct groups and the differences of characteristics are statistically significant. The first group is high sales of the box office and the number of clicks on reviews is higher than other groups. The characteristic of the second group is similar with the 1st group, while the length of review is longer and the box office sales are not good. The third group's audiences prefer to documentaries and animations and the number of comments and interests are significantly lower than other groups. The last group prefer to criminal, thriller and suspense genre. Correspondence analysis is also conducted to match the groups and intrinsic characteristics of films such as genre, movie rating and nation.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.6
/
pp.63-81
/
2023
This study endeavors to classify and categorize similar policy programs through network clustering analysis, using textual information from data-related policy programs in Korea. To achieve this, descriptions of data-related budgetary programs in South Korea in 2022 were collected, and keywords from the program contents were extracted. Subsequently, the similarity between each program was derived using TF-IDF, and policy program network was constructed accordingly. Following this, the structural characteristics of the network were analyzed, and similar policy programs were clustered and categorized through network clustering. Upon analyzing a total of 97 programs, 7 major clusters were identified, signifying that programs with analogous themes or objectives were categorized based on application area or services utilizing data. The findings of this research illuminate the current status of data-related policy programs in Korea, providing policy implications for a strategic approach to planning future national data strategies and programs, and contributing to the establishment of evidence-based policies.
Journal of the Korean Society for Library and Information Science
/
v.41
no.1
/
pp.345-372
/
2007
In this study, the intellectual structure of Records Management & Archival Science in Korea was analyzed using document clustering, a widely used method of text mining, and document similarity network analysis. The data used in this study were 145 articles written on the subject of Records Management & Archival Science selected from five major representative journals in the field of Library & Information Science in Korea, published from 2001 to 2006. The results of cluster analysis show that the core subject areas are "electronic records management and digital Preservation," "records management policy and institution," "records description and catalogues." and "records management domain and education." The results of document analysis, which is more detailed than cluster analysis, show that "digital archiving," a specialized subject in digital preservation, plays a central role. The results of serial analysis, which proceeds according to a timeline, show the emergence of "archival services" as a new subject area.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1429-1437
/
2013
Research articles in food related to climate change were analyzed by implementing a text-mining algorithm, which is one of nonstructural data analysis tools in big data analysis with a focus on frequencies of terms appearing in the abstracts. As a first step, a term-document matrix was established, followed by implementing a hierarchical clustering algorithm based on dissimilarities among the selected terms and expertise in the field to classify the documents under consideration into a few labeled groups. Through this research, we were able to find out important topics appearing in the field of food related to climate change and their trends over past years. It is expected that the results of the article can be utilized for future research to make systematic responses and adaptation to climate change.
Park, J.H.;Lee, G.S.;Kim, S.H.;Lee, M.H.;Toan, N.D.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.2
/
pp.44-51
/
2009
Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.
Journal of the Korea Society of Computer and Information
/
v.23
no.12
/
pp.153-161
/
2018
In this paper, we propose a text-centered approach to identify the research trend of thyroid cancer in Korea. We incorporate statistical analysis, text mining and machine learning techniques with our clinical insights to find connective associations between terminologies and to discover informative clusters of literatures. The incidence of thyroid cancer in Korea increased rapidly in the 2000s, which fueled the debate regarding overdiagnosis, but recently the number of patients undergoing surgery has decreased significantly due to conscious reform efforts from various circles. We analyzed the abstracts and keywords of related research papers from DBpia. It was found that most were case reports in the 1980s, and some papers in the 1990s discussed the early detection of thyroid cancer by mass screening. While many papers focused on different diagnostic techniques and the detection of small cancers in the 2000s, many emphasized more on the quality of life of patients in the 2010s. There was an apparent change in the topics of thyroid cancer research over past decades. The results of this study would serve as a reference guide for current and future research directions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.