Text Detection and Recognition in Outdoor Korean Signboards for Mobile System Applications

모바일 시스템 응용을 위한 실외 한국어 간판 영상에서 텍스트 검출 및 인식

  • Park, J.H. (School of Electronic and Computer Engineering, Chonnam National University) ;
  • Lee, G.S. (School of Electronic and Computer Engineering, Chonnam National University) ;
  • Kim, S.H. (School of Electronic and Computer Engineering, Chonnam National University) ;
  • Lee, M.H. (School of Electronic and Computer Engineering, Chonnam National University) ;
  • Toan, N.D. (School of Electronic and Computer Engineering, Chonnam National University)
  • 박종현 (전남대학교 전자컴퓨터공학부) ;
  • 이귀상 (전남대학교 전자컴퓨터공학부) ;
  • 김수형 (전남대학교 전자컴퓨터공학부) ;
  • 이명훈 (전남대학교 전자컴퓨터공학부) ;
  • Published : 2009.03.25

Abstract

Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.

자연 영상에서의 텍스트 이해는 지난 수년간 매우 활발한 연구 분야로 자리하고 있다. 논문에서 우리는 한국어 간판 영상으로부터 자동으로 텍스트를 인식하는 방법을 제안한다. 제안된 방법은 상호명의 인식을 위한 텍스트 영역의 검출 및 이진화를 포함하고 있다. 먼저 수직, 수평 방향의 에지 히스토그램을 이용하여 텍스트 영역의 정교한 검출을 수행하였다. 두 번째 단계는 검출된 텍스트 영역에 대해서 연결요소 기법을 적용하여 각각의 독립된 한 개의 문자 영역으로 분할되어지고, 마지막으로 최소 거리 분류법에 의해 각각의 글자를 인식한다. 각각의 문자 인식을 위해 모양 기반 통계적 특징을 추출한다. 실험에서 제안된 전체적인 효율성 및 정확성을 분석하였으며, 현재 구현된 모바일 시스템의 실용성을 확인할 수 있었다.

Keywords

References

  1. G. Obinata, A. Dutta, Vision Systems: Segmentation and Pattern Recognition, I-Tech, pp. 307-332, 2007
  2. K.J. Jung, K.I. Kim, A.K. Jain, 'Text information extraction in images and video: a survey,' Pattern Recognition, vo. 37, pp. 977-997, 2004 https://doi.org/10.1016/j.patcog.2003.10.012
  3. G. Nagy, 'Twenty years of document image analysis' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 38-62, 2000 https://doi.org/10.1109/34.824820
  4. H. Peng, F. Long, Z. Chi, 'Document image recognition based on template matching of component block projections,' IEEE Transactions on Patter Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1188-1192, 2003 https://doi.org/10.1109/TPAMI.2003.1227996
  5. H. Li, D. Doermann, O. Kia, 'Automatic text detection and tracking in digital videos,' IEEE Transactions on Image Processing, vol. 9, no. 1, pp. 147-156, 2000 https://doi.org/10.1109/83.817607
  6. J. Xi, X. Hua, L. Wenyin, H.J. Zhang, 'A video text detection and recognition system,' International Conference on Multimedia and Expo, pp. 873-876, 2001
  7. N. Ezaki, K. Kiyota, B.T. Minh, M. Bulacu, L. Schomaker, 'Improved text-detection methods for a camera-based text reading system for blind persons,' International Conference on Document Analysis and Recognition, pp. 257-261, 2005
  8. Q. Ye, J. Jiao, J. Huang, H. Yu, 'Text detection and restoration in natural scene images,' Journal of Visual Communication and Image Representation, vol. 18, pp. 504-513, 2007 https://doi.org/10.1016/j.jvcir.2007.07.003
  9. J.G. Lim, J.H. Park and G.G. Medioni, 'Text segmentation in color images using tensor voting,' Imageand Vision Computing, vol.25, pp.671-685, 2007 https://doi.org/10.1016/j.imavis.2006.05.011
  10. J. Zhang, X. Chen, A. Hanneman, J. Yang and A. Waibel, 'A robust approach for recognition of text embedded in natural scenes,' International Conference on Pattern Recognition, vol. 3, pp. 204-207, 2002
  11. J. Yang, J. Gao, Y. Zhang and A. Waibel, 'Toward automatic sign translation,' Human Language Technology, pp. 269-274, 2001
  12. J. Gllavata, R. Ewerth, B. Freisleben, 'A robust algorithm for text detection in images,' International Symposium on Image and Signal Processing, vol. 2, pp. 611-616, 2003
  13. W. Wu, X. Chen, J. Yang, 'Detection of text on road signs from video,' IEEE Transaction Intelligent Transportation Systems, vol. 6, no. 4, pp. 378-390, 2005 https://doi.org/10.1109/TITS.2005.858619
  14. A.K. Jain, B. Yu, 'Automatic text location in image and video frames,' International Conferenceon Pattern Recognition, vol. 2, pp. 1497-1499, 1998
  15. M. Fujii, W.J.R. Hoefer, 'Filed-singularity correction in 2-D time-domain Haar-wavelet Modeling of waveguide components,' IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 685–691, 2001 https://doi.org/10.1109/22.915443
  16. X. Tang, X. Gao, J. Liu, H. Zhang, 'A spatial-temporal approach for video caption detection and recognition,' IEEE Transactions on Neural Network, vol. 13, no. 4, pp. 961–971, 2002 https://doi.org/10.1109/TNN.2002.1021896
  17. R. Mullot, C. Olivier, J.L. Bourdon, P. Courtellemont, J.Labiche, and Y. Lecourtier, 'Automatic extraction methods of container identity number and registration plates of cars,' International Conference Industrial Electronics, Control, Instrumentation, vol. 2591, pp. 1739-1744, 1991
  18. Y. Watanabe, Y. Okada, Y.B. Kim and T. Takeda, 'Translation camera,' International Conference on Image Processing, pp. 613-617, 1998
  19. J. Yang, W. Yang, M. Denecke and A. Waibel, 'Smart sight: A tourist assistant system,' Int. Symp. Wearable Computers, pp.73-78, 1999
  20. Y.W. Lim and S.U. Lee, 'On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques,' Pattern Recognition, vol. 23, no. 9, pp. 935-952, 1990 https://doi.org/10.1016/0031-3203(90)90103-R
  21. D.A. Forsyth, J. Ponce, Computer Vision A Modern Approach, Prentice Hall, 2003