• 제목/요약/키워드: Text Sentiment

검색결과 270건 처리시간 0.031초

그래프 기반 준지도 학습 방법을 이용한 특정분야 감성사전 구축 (The Construction of a Domain-Specific Sentiment Dictionary Using Graph-based Semi-supervised Learning Method)

  • 김정호;오연주;채수환
    • 감성과학
    • /
    • 제18권1호
    • /
    • pp.103-110
    • /
    • 2015
  • 감성어휘는 텍스트로 감성을 표현하거나, 반대로 텍스트로부터 감성을 인식하기 위한 특징으로써 감성분류 연구에 필수요소이다. 본 연구는 감성어휘의 집합인 감성사전을 자동으로 구축하는 그래프 기반 준지도 학습 방법을 제안한다. 특히 감성어휘가 사용되어지는 분야에 따라 그 감성이 변하는 중의성 문제를 고려하여 분야 별 감성사전을 구축하고자 한다. 제안하는 방법은 어휘와 어휘들 간의 밀접도를 토대로 그래프를 구성하고, 사전에 학습 된 일부 소량의 감성어휘들의 감성을 구성된 그래프 전체에 전파하는 방식으로 모든 어휘의 감성을 추론한다. 감성어휘는 대표적으로 감성단어와 감성구문이 있으며, 본 연구에서는 이들 각각에 대한 그래프를 구성하고 감성을 추론하여 전체 감성사전을 구축하였다. 제안하는 방법의 성능을 검증하기 위해 영화평 분야의 감성사전을 구축하고, 이를 이용한 영화평 감성분류 실험을 수행하였다. 그 결과 기존 범용 감성사전의 어휘들을 이용한 감성분류보다 더 높은 분류 성능을 확인하였다.

BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델 (BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model)

  • 장쥔쥔;신종호;안수빈;박태영;노기섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.34-36
    • /
    • 2022
  • 기존 텍스트 감성 분석 모델에서는 일반적으로 전체 텍스트를 직접 모델링하고, 텍스트 내용 간의 계층적 관계를 덜 고려한다. 그러나 감정분석의 구현에서는 많은 텍스트가 여러 감정으로 뒤섞여 있다. 전체의 의미론적 모델링을 직접 수행하면 감성분석 모델의 판단 난도가 높아져 혼합 감정 문장의 분류에 적용하기 어려울 수 있다. 따라서 본 논문에서는 텍스트 계층을 고려한 감성 분석 모델 BHGCN을 제안한다. 이 모델에서는 BERT의 각 레이어의 숨겨진 상태의 출력이 노드로 사용되며, 상위 레이어와 하위 레이어 사이에 직접 연결이 이루어져 의미 계층이 있는 그래프 네트워크를 구축한다. BHGCN 모델은 계층별 의미론에 주의를 기울일 뿐만 아니라 계층적 관계에도 주의를 기울이기 때문에 혼합 감성 분류 작업을 처리하는 데 적합하다. 본 논문에서는 비교 실험을 통해 제안하는 BHGCN 모델이 명백한 경쟁 우위를 보인다는 것을 입증하였다.

  • PDF

재무분야 감성사전 구축을 위한 자동화된 감성학습 알고리즘 개발 (Developing the Automated Sentiment Learning Algorithm to Build the Korean Sentiment Lexicon for Finance)

  • 조수지;이기광;양철원
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

Romanian-Lexicon-Based Sentiment Analysis for Assesing Teachers' Activity

  • Barila, Adina;Danubianu, Mirela;Gradinaru, Bogdanel
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.43-50
    • /
    • 2022
  • The students' feedback is important to measure and improve teaching performance. Many teacher performance evaluation systems are based on responses to closed question, but the free text answers can contain useful information which had to be explored. In this paper we present a lexicon-based sentiment analysis to explore students' text feedback. The data was collected from a system for the evaluation of teachers by students developed and used in our university. The students comments are in Romanian language so we built a Romanian sentiment word lexicon. We used this to categorize the feeback text as positive, negative or neutral. In addition, we added a new polarity - indifferent - in order to categorize blank and "I don't answer" responses.

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing;Shin, Seong-Yoon;Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.1-7
    • /
    • 2019
  • 머신 러닝의 심층 개발로 딥 러닝 방법은 특히 CNN(Convolution Neural Network)에서 큰 진전을 이루었다. 전통적인 텍스트 정서 분류 방법과 비교할 때 딥 러닝 기반 CNN은 복잡한 다중 레이블 및 다중 분류 실험의 텍스트 분류 및 처리에서 크게 발전하였다. 그러나 텍스트 정서 분류를 위한 신경망에도 문제가 있다. 이 논문에서는 LSTM (Long-Short Term Memory network) 및 CNN 딥 러닝 방법에 기반 한 융합 모델을 제안하고, 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝을 기반으로 한 융합 모델이 텍스트 정서 분류의 예측성과 정확성을 크게 개선하였다. 본 논문에서 제안한 방법은 모델을 최적화하고 그 모델의 성능을 개선하는 중요한 방법이 될 것이다.

Amazon product recommendation system based on a modified convolutional neural network

  • Yarasu Madhavi Latha;B. Srinivasa Rao
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.633-647
    • /
    • 2024
  • In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.

An Improved Text Classification Method for Sentiment Classification

  • Wang, Guangxing;Shin, Seong Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2019
  • In recent years, sentiment analysis research has become popular. The research results of sentiment analysis have achieved remarkable results in practical applications, such as in Amazon's book recommendation system and the North American movie box office evaluation system. Analyzing big data based on user preferences and evaluations and recommending hot-selling books and hot-rated movies to users in a targeted manner greatly improve book sales and attendance rate in movies [1, 2]. However, traditional machine learning-based sentiment analysis methods such as the Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) had performed poorly in accuracy. In this paper, an improved kNN classification method is proposed. Through the improved method and normalizing of data, the purpose of improving accuracy is achieved. Subsequently, the three classification algorithms and the improved algorithm were compared based on experimental data. Experiments show that the improved method performs best in the kNN classification method, with an accuracy rate of 11.5% and a precision rate of 20.3%.

Korean and English Sentiment Analysis Using the Deep Learning

  • 마렌드라;최형림;임성배
    • 한국산업정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.59-71
    • /
    • 2018
  • Social media has immense popularity among all services today. Data from social network services (SNSs) can be used for various objectives, such as text prediction or sentiment analysis. There is a great deal of Korean and English data on social media that can be used for sentiment analysis, but handling such huge amounts of unstructured data presents a difficult task. Machine learning is needed to handle such huge amounts of data. This research focuses on predicting Korean and English sentiment using deep forward neural network with a deep learning architecture and compares it with other methods, such as LDA MLP and GENSIM, using logistic regression. The research findings indicate an approximately 75% accuracy rate when predicting sentiments using DNN, with a latent Dirichelet allocation (LDA) prediction accuracy rate of approximately 81%, with the corpus being approximately 64% accurate between English and Korean.

텍스트 마이닝 기반의 자산관리 핀테크 기업 핵심 요소 분석: 사용자 리뷰를 바탕으로 (An Analysis of Key Elements for FinTech Companies Based on Text Mining: From the User's Review)

  • 손애린;신왕수;이준기
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권4호
    • /
    • pp.137-151
    • /
    • 2020
  • Purpose Domestic asset management fintech companies are expected to grow by leaps and bounds along with the implementation of the "Data bills." Contrary to the market fever, however, academic research is insufficient. Therefore, we want to analyze user reviews of asset management fintech companies that are expected to grow significantly in the future to derive strengths and complementary points of services that have been provided, and analyze key elements of asset management fintech companies. Design/methodology/approach To analyze large amounts of review text data, this study applied text mining techniques. Bank Salad and Toss, domestic asset management application services, were selected for the study. To get the data, app reviews were crawled in the online app store and preprocessed using natural language processing techniques. Topic Modeling and Aspect-Sentiment Analysis were used as analysis methods. Findings According to the analysis results, this study was able to derive the elements that asset management fintech companies should have. As a result of Topic Modeling, 7 topics were derived from Bank Salad and Toss respectively. As a result, topics related to function and usage and topics on stability and marketing were extracted. Sentiment Analysis showed that users responded positively to function-related topics, but negatively to usage-related topics and stability topics. Through this, we were able to extract the key elements needed for asset management fintech companies.