Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
Interdisciplinary Bio Central
/
제3권2호
/
pp.7.1-7.6
/
2011
Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.
Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.
Kim, Yoosin;Ju, Yeonjin;Hong, SeongGwan;Jeong, Seung Ryul
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권8호
/
pp.4133-4145
/
2017
Advances in science and technology are driving us to the better life but also forcing us to make more investment at the same time. Therefore, the government has provided the investment to carry on the promising futuristic technology successfully. Indeed, a lot of resources from the government have supported into the science and technology R&D projects for several decades. However, the performance of the public investments remains unclear in many ways, so thus it is required that planning and evaluation about the new investment should be on data driven decision with fact based evidence. In this regard, the government wanted to know the trend and issue of the science and technology with evidences, and has accumulated an amount of database about the science and technology such as research papers, patents, project reports, and R&D information. Nowadays, the database is supporting to various activities such as planning policy, budget allocation, and investment evaluation for the science and technology but the information quality is not reached to the expectation because of limitations of text mining to drill out the information from the unstructured data like the reports and papers. To solve the problem, this study proposes a practical text mining methodology for the science and technology trend analysis, in case of aerospace technology, and conduct text mining methods such as ontology development, topic analysis, network analysis and their visualization.
Because military weapons systems for special purposes are small and complex, they are not easy to maintain. Therefore, it is very important to maintain combat strength through quick maintenance in the event of a breakdown. In particular, naval ships are complex weapon systems equipped with various equipment, so other equipment must be considered for maintenance in the event of equipment failure, so that skilled maintenance personnel have a great influence on rapid maintenance. Therefore, in this paper, we analyzed maintenance data of defense equipment maintenance information system through text mining and social network analysis(SNA), and tried to identify the naval ship maintenance expertise. The defense equipment maintenance information system is a system that manages military equipment efficiently. In this study, the data(2,538cases) of some naval ship maintenance teams were analyzed. In detail, we examined the contents of main maintenance and maintenance personnel through text mining(word cloud, word network). Next, social network analysis(collaboration analysis, centrality analysis) was used to confirm the collaboration relationship between maintenance personnel and maintenance expertise. Finally, we compare the results of text mining and social network analysis(SNA) to find out appropriate methods for finding and finding naval ship maintenance expertise.
Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extracting meaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions (ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on text analysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text of KAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the whole text, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis are performed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Among total 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache, vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움, dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion: Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining in ADRs research is able to play an important role in detecting signal information and prediction of ADRs.
본 논문은 텍스트 마이닝 기법으로 명사의 빈도수를 조사하여 워드클라우드를 나타내는 기존의 방법을 개선하여 지능적 워드클라우드를 구현하는 방법을 제안한다. 텍스트 마이닝 시에 명사 단어를 추출하는 사전에 누락된 신조어 등의 단어를 효과적으로 추가하고, 동사 등 다른 품사위주의 워드클라우드를 시각적으로 보여주는 방법을 제안한다. 실험에서 기존 명사의 빈도수 추출에는 KoNLP 패키지를 사용하였고, 지원되지 않는 신조어 80개를 추가하였고 빈도수를 수동으로 조사하여 추가하였다.
Purpose Social interest in financial statement notes has recently increased. However, contrary to the keen interest in financial statement notes, there is no morphological analyzer for accounting terms, which is why researchers are having considerable difficulty in carrying out research. In this study, we build a morphological analyzer for accounting related text mining techniques. This morphological analyzer can handle accounting terms like financial statements and we expect it to serve as a springboard for growth in the text mining research field. Design/methodology/approach In this study, we build customized korean morphological analyzer to extract proper accounting terms. First, we collect Company's Financial Statement notes, financial information data published by KPFIS(Korea Public Finance Information Service), K-IFRS accounting terms data. Second, we cleaning and tokeninzing and removing stopwords. Third, we customize morphological analyzer using n-gram methodology. Findings Existing morphological analyzer cannot extract accounting terms because it split accounting terms to many nouns. In this study, the new customized morphological analyzer can detect more appropriate accounting terms comparing to the existing morphological analyzer. We found that accounting words that were not detected by existing morphological analyzers were detected in new customized morphological analyzers.
This study aims to extract key topics through text mining of incident records (incident history, post-incident measures, preventive measures) from construction safety accident case data available on the public data portal. It also seeks to provide fundamental insights contributing to the establishment of manuals for disaster prevention by identifying correlations between these topics. After pre-processing the input data, we used the LDA-based topic modeling technique to derive the main topics. Consequently, we obtained five topics related to incident history, and four topics each related to post-incident measures and preventive measures. Although no dominant patterns emerged from the topic pattern analysis, the study holds significance as it provides quantitative information on the follow-up actions related to the incident history, thereby suggesting practical implications for the establishment of a preventive decision-making system through the linkage between accident history and subsequent measures for reccurrence prevention.
Purpose: The purpose of this study is to analyze the trend of quality research by analyzing the entire JKSQM(Journal of the Korean Society for Quality Management). Methods: This study is to analyze the frequency of words used in the abstract of the all JKSQM by applying the text mining processing. We use wordcrowd among text mining techniques. Results: 22 words of high frequency were presented in the abstract of the paper published in the JKSQM for 42 years. The frequency of words was shown on a 10 year basis, and the four important words were plotted on a change graph for each Vol. Frequent words of each Vol. are added in the appendix. Conclusion: The main research results are as follows. First, there has been no significant change in research trends over the last 40 years. Second, the early SQC words have been widely used, and since 1990, many words such as service-oriented words have been used, indicating a change in the times. Third, the use of the words of the 4th industrial revolution since 2010 is weak. In the above analysis, the trend of quality research in Korea is within the quality category and can be considered conservative. Now, it is expected that everything will be changed in the period of the 4th Industrial Revolution, and it is time to study the direction of quality in Korea.
These days, online media, such as blogospheres, online communities, and social networking sites, provides the uncountable user-generated content (UGC) to discover market intelligence and business insight with. The business has been interested in consumers, and constantly requires the approach to identify consumers' opinions and competitive advantage in the competing market. Analyzing consumers' opinion about oneself and rivals can help decision makers to gain in-depth and fine-grained understanding on the human and social behavioral dynamics underlying the competition. In order to accomplish the comparison study for rival products and companies, we attempted to do competitive analysis using text mining with online UGC for two popular and competing ramens, a market leader and a market follower, in the Korean instant noodle market. Furthermore, to overcome the lack of the Korean sentiment lexicon, we developed the domain specific sentiment dictionary of Korean texts. We gathered 19,386 pieces of blogs and forum messages, developed the Korean sentiment dictionary, and defined the taxonomy for categorization. In the context of our study, we employed sentiment analysis to present consumers' opinion and statistical analysis to demonstrate the differences between the competitors. Our results show that the sentiment portrayed by the text mining clearly differentiate the two rival noodles and convincingly confirm that one is a market leader and the other is a follower. In this regard, we expect this comparison can help business decision makers to understand rich in-depth competitive intelligence hidden in the social media.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.