• Title/Summary/Keyword: Tetragonal zirconia polycrystal

Search Result 35, Processing Time 0.026 seconds

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.

Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic (Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도)

  • Nam, Hyun-Seok;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • The purpose of this study is to know whether Yttrium-stabilized-tetragonal -zirconia-polycrystal(Y-TZP ceramic) gets enough shear bond strength for clinical uses by applying veneering composite resin through surface treatment on it and finally to compare it with the case of applying veneering porcelain. LavaTM zirconia frameworks(3M ESPE, Seefeld, Germany) were prepared. Group P was manufactured with LavaTM Ceram(3M ESPE, Seefeld, Germany) in cylindrical shape which has 4mm diameter, 5mm height. Group ZSR disposed sandblasting and applied silane, bonding agent and after that indirect composite resin was applied. Group ZRR got tribochemical coating by RocatecTM system(3M ESPE. Seefeld, Germany) and treated silane. Finally Group ZPR took the same treatment and applied LavaTM Ceram in the size of 0.3-0.5mm height. After burning out, sandblasting, HF and silane was applied. And then, indirect composite resin was applied. 1000 cycle thermocycling was performed in $5-55^{\circ}C$ and shear bond strength was measured. There were no significant differences between combining veneering porcelain to Y-TZP ceramic group and combining veneering resin to Y-TZP ceramic group in the aspect of shear bond strength (p>.05).

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

Space Charge Effect on Grain Growth Kinetics of Tetragonal Zirconia Polycrystal

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The effect of aliovalent dopents, $Nb_3O_5$ and MnO, on the grain growth kinetics of 12 mol% ceria stabilized tetragonal zirconia polycrystals (Ce-TZP) was studied. All specimens were sintered at $1550^{\circ}C$ for 20 minutes prior to annealing at different temperatures to study grain growth kinetics. Grain growth kinetics of Ce-TZP and 1 mol% $Nb_2O_5$ doped Ce-TZP (Ce-TZP/$Nb_3O_5$) during annealing at 1475, 1550, and $1600^{\circ}C$ adequately matched with square law $(D^2-D_\;o^2=k_at)$. However, grain growth in 1 mol% MnO suppressed grain growth in Ce-TZP by drag force exerted by $Mn^{+2}$ ions which segregated strongly to the positively-charged grain boundaries of Ce-TZP, $Nb_2O_5$ enhanced grain growth by increasing the concentration of vacancies of $Zr^{+4}$ ion and $Ce^{+4}$ ions. Surface analysis with X-ray photoelectron spectroscopy (XPS) showed the segregation of Mn+2 ions to grain boundaries. The kinetics of grain growth obtained in the base Ce-TZP and the Ce-TZPs with the aliovalent dopants were examined in the context of impurity drag effect and space charge effect.

  • PDF

Hydrothermal Stability of (Y, Nb)-TZP/$Al_2O_3$ Composites

  • Lee, Deuk-Yong;Kim, Dae-Joon;Lee, Seung-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.371-374
    • /
    • 1999
  • Y2O3 and Nb2O5 co-doped tetragonal zirconia polycrystals((Y, Nb)-TZP) containing 10 to 30 vol% $Al_2O_3$ were prepared and hydrothermal stability of the composites was evaluated after aging for 5 h at the temperature range of $150^{\circ}C$ $250^{\circ}C$ under 4 MPa $H_2O$ vapor pressure in an autoclave. The (Y, Nb)-TZP/Al2O3 composites showed excellent phase stability under the hydrothermal conditions, as compared with the 3Y-TZP/$Al_2O_3$ composites, due to the combined effects of the Y-Nb ordering in the $t-ZrO_2$ lattice, the reduction of oxygen vacancy concentration, and the $Al_2O_3$ addition. The strength and fracture toughness of the (Y, Nb)-TZP/$Al_2O_3$ composite, containing 20 vol% of 2.8 $Al_2O_3$ particles, were 700 MPa and 8.1 MP.$am^{1/2}$, respectively.

  • PDF

Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP (3Y-TZP의 기계적 특성에 미치는 산화물 조성 및 첨가제의 영향)

  • Park, Mi-Jung;Yang, Seong-Koo;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.640-645
    • /
    • 2006
  • Monoclinic zirconia and yttria were mixed with a stoichiometric composition of 3Y-TZP (3 mol% Yttria-stabilized Tetragonal Zirconia Polycrystal). The specimen was sintered at 1350$\sim$1450$^{\circ}C$ and mechanical characterization and microstructure analysis were conducted. Microhardness and fracture toughness were shown as 1357.4 Hv and 8.56 MPa $m^{1/2}$. respectively. Without alumina, they were 1311 Hv and 10.02 MPa $m^{1/2}$ respectively. By mixing two different oxides, it was possible to obtain high values of microhardness and fracture toughness. It was possible that was turned out nano-scale particle using the co-milling of high mechanical energy.

Preparation of Calcia Stabilized Tetragonal Zirconia Powders by Hydrothermal Synthesis Techniques (수열합성법에 의한 칼시아 안정화 정방정 지르코니아(Ca-TZP)분말의 제조)

  • 곽효섭;백용혁;문기동;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.33-39
    • /
    • 1992
  • Calcia stabilized zirconia polycrystal(Ca-TZP) powders were prepared by hydrothermal treatment at $200 ^{\circ}C$ in autoclave. Ca-TZP powders were shown the spherical shape with an average diameter of about 9-13 nm and specific surface area of>$112m^2/g$, and possessed weak agglomerates among the particles.

  • PDF

Effect of Hydrofluoric Acid Etching on Shear Bond Strength between Resin Cement and Zirconia cores (표면 불산처리가 레진시멘트와 지르코니아 하부구조물의 전단결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Sun-Moon;Kim, Chong-Kyen
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.361-367
    • /
    • 2018
  • The purpose of this study was to evaluate the influence of hydrofluoric acid etching treatment on the bonding strength of yttria-stabilized tetragonal zirconia polycrystal(Y-TZP). Four groups of zirconia-resin cement specimens were prepared; 1) ZGS group (zirconia, no treatment), 2) ZGSH group (zirconia, hydrofluoric acid etching treatment) 3) H-ZGS group (Hybrid zirconia, no treatment) 4) H-ZGSH group (Hybrid zirconia, hydrofluoric acid etching treatment). The shear bond strength between zirconia and porcelain was measured using a Instron Universal Testing Machine(Model DBBP-500, Instron Corporation, Kyonggi, Korea). Data were statistically analyzed using independent t-test and two-way ANOVA(${\alpha}=0.05$). The ceramic-resin cement bonding strength was affected by hydrofluoric acid etching treatment(p<0.05). Digital microscope examination of the fracture surface showed mixed failures with adhesive and cohesive types in hydrofluoric acid etching treatment with treated zirconia and hybrid zirconia groups.

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.