Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.12.677

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering  

Choi, Min-Geun (Department of Materials Science and Engineering, Inha University)
Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University)
Kong, Kyu-Hwan (Department of Materials Science and Engineering, Inha University)
Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
Lee, Wonjoo (Research Center for Green Fine Chemicals, KRICT)
Li, Long-Hao (School of Materials Science and Engineering, University of Ulsan)
Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.24, no.12, 2014 , pp. 677-681 More about this Journal
Abstract
To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.
Keywords
$ZrO_2$; CaO; hydroxyapatite; decomposition; diffusion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, 258, 703 (1975).   DOI   ScienceOn
2 T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff and B. R. Rossing, J. Mater. Sci., 12, 2421 (1977).   DOI   ScienceOn
3 D. L. Porter and A. H. Heuer, J. Am. Ceram. Soc., 60, 183 (1977).   DOI
4 Y. M. Kong, S. Kim and H. E. Kim. J. Am. Ceram. Soc., 82, 2963 (1999).
5 S. H. Jung and J. B. Kang, Korean. J. Mater. Res., 20, 379 (2010)   DOI   ScienceOn
6 M. Turon-Vinasa and M. Anglada, J. Eur. Ceram. Soc., 34, 3865 (2014).   DOI   ScienceOn
7 J. Vleugels, Z. X. Yuan and O. Van Der Biest, J. Euro. Ceram. Soc., 22, 873 (2002).   DOI   ScienceOn
8 S. P. S. Badwal, Solid State Ionics, 52, 23 (1992).   DOI   ScienceOn
9 M. Filal, C. Petot, M. Mokchah, C. Chateau and J.L. Carpentier, Solid State Ionics, 80, 27 (1995).   DOI   ScienceOn
10 C. J Liao, F. H. Lin, K. S. Chen and J. S. Sun, Biomaterials, 20, 1801 (1999).
11 D. Turnbull and R. E. Hoffman, Acta Matall., 2, 419 (1954).   DOI   ScienceOn
12 R. A. Cutler, J. R. Reynolds and A. Jones, J. Am. Ceram. Soc., 75, 2173 (1992).   DOI
13 M. Dudek, G. Rog, W. Bogusz, A. Kozlowska-rog, M. Bucko and L. Zych, Mater. Sci.-Poland, 24, 253 (2006).
14 P. Duwez, F. H. Brown and F. Odell, J. Electrochem. Soc., 98, 356 (1951).   DOI
15 H. Schubert, J. Am. Ceram. Soc., 69, 270 (1986).   DOI   ScienceOn
16 M. R. Nadler and E. S. Fitzsimmons, J. Am. Ceram. Soc., 38, 214 (1955).
17 B. D. Cullity: Element of X-ray Diffraction, P 269, Addison- Wesley Publishing Company. Inc., New York (1956).
18 J. H. Ryu, J. I. Moon, Y. K. Park, N, T. Dung, J. H. Song and T. N. Kim, Korean. J. Mater. Res., 22, 220 (2012).   DOI   ScienceOn