• Title/Summary/Keyword: Testing procedure

Search Result 880, Processing Time 0.023 seconds

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

Geophysical and mechanical investigation of different environmental effects on a red-bed soft rock dam foundation

  • Liming Zhou;Yujie Li;Fagang Wang;Yang Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • Red-bed soft rock is a common stratum and it is necessary to evaluate the mechanical properties and bearing capacity of red-bed soft rock mass affected by different environmental effects. This paper presents a complete procedure for evaluating the bearing capacity of red-bed soft rock by means of geophysical exploration and in-situ rock mechanics tests. Firstly, the thickness of surface loosened rock mass of red-bed soft rock was determined using geophysical prospecting method. Then, three environmental effects, including natural weathering effect, dry-wet cycling effect and concrete sealing effect, were considered. After each effect lasted for three months, in-situ rock mass mechanical tests were conducted. The test results show that the mechanical properties of rock mass considering the sealing effect of concrete were maintained. After considering the natural weathering effect, the mechanical parameters decrease to a certain extent. After considering the effect of dry-wet cycling, the decreases of mechanical parameters are the most significant. The test results confirm that the red-bed soft rock dam foundation rock mass will be significantly affected by various environmental effects. Therefore, combined with the mechanical test results, some useful implementations are proposed for the construction of a red-bed soft rock dam foundation.

Examining the Impact of Avatar Customization on the Continuous Intention to Use the Metaverse -The Mediating Role of Self-expansion and the Moderating Effect of Self-efficacy- (아바타 커스터마이징이 메타버스 지속사용의도에 미치는 영향에 있어 자아확장의 매개역할과 자기효능감의 조절효과)

  • Namhee Yoon
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.704-714
    • /
    • 2023
  • This study explores how avatar customization influences the continuous intention to use the metaverse, mediated by self-expansion. The moderating effects of self-efficacy between avatar customization and self-expansion are also explored. Data were collected through an online survey using consumer panels. Participants were Zepeto users aged 18 or older who had used the platform within the previous six months. They were asked to recall a recent shopping experience of exploring the virtual fashion store via Zepeto. A total of 196 valid responses from participants were analyzed using SPSS 26.0 for descriptive statistics, reliability analysis, and PROCESS procedure, and AMOS 23.0 for confirmatory factor analysis. Results demonstrate that avatar customization increases continuous intention to use the metaverse; this effect is mediated by self-expansion. The moderated mediation effect of self-efficacy in the indirect path was significant and mediated by self-expansion. Specifically, the interplay effect of avatar customization and self-efficacy on self-expansion was statistically significant. For participants with high self-efficacy, avatar customization increases self-expansion, and it mediates the relationship between avatar customization and the continuous intention to use the metaverse. Findings contribute to expanding the literature on metaverse usage by testing the impact of avatar customization on self-expansion.

Development and Validation of Adaptive Game Use Scale (AGUS) (적응적 게임활용 척도 개발 및 타당화)

  • Hoon-Seok Choi ;Kyo-Heon Kim ;Joung Soon Ryong ;Keum-Mi Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.15 no.4
    • /
    • pp.565-589
    • /
    • 2009
  • The present study explored the major components of adaptive game behavior among adolescents in Korea. Based on relevant research and a pilot testing, an Adaptive Game Use Scale (AGUS) was developed and validated. A stratified sampling procedure was used to draw a representative sample, and a total of 600 male and female students from middle schools and high schools in various regions participated in the study. Factor analyses revealed 7 facets of adaptive game behavior, including experiencing vitality, expanding life experience, making good use of leisure time, experiencing flow, exercising control, experiencing self-esteem, maintaining and expanding social network. Internal consistency and temporal stability(4 weeks) of the scale were both high. A confirmatory factor analysis indicated that a 7-factor hierarchical model fits well with the data. Moreover, additional analyses suggested that AGUS and game addiction are conceptually distinct. Correlational analyses also indicated that AGUS has good discriminant validity and concurrent validity. Implications of the findings and future directions were discussed.

  • PDF

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Analysis of Internal Overpressure by Pipe Cross-Sectional Area Ratio and Filling Rate in the Hydraulic Test of Shipboard Tank (수압시험 시 관 단면적 비 및 충수 속도별 탱크 내부 과압 발생에 관한 해석)

  • Geun-Gon Kim;Tak-Kee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.460-472
    • /
    • 2023
  • This study was conducted based on the case of an accident (excessive deformation) that occurred during the hydraulic test of a shipboard tank manufactured in accordance with the design regulations. Over-pressure phenomenon was noted as the main cause of accidents in the process of testing tanks without physical damage, which can be found in external factors such as cross-sectional difference between inlet pipe and air pipe and higher water filling rate than the recommended one. The main goal of this paper is to establish a safe water filling rate according to the range of sectional area ratio(SAR) reduced below the regulations for each test situation. The simulation was conducted in accordance with the hydraulic test procedure specified in the Ship Safety Act, and the main situation was divided into two types: filling the tank with water and increasing the water head to the test pressure. The structural safety evaluation of the pressure generated inside the tank and the effect on the structure during the test was reviewed according to the SAR range. Based on the results, guidelines for the optimal filling rate applicable according to SAR during the hydraulic test were presented for the shipboard tanks used in this study.

Analysis of Reduction Effect of Inter-Floor Noise Using Active Noise Control (ANC) Technique (능동소음제어 기술을 이용한 층간소음 저감효과 분석)

  • Hojin, Kim;Joong-Kwan Kim;Junhwan Kim;Hyunsuk Kim;Hyuk Wee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.45-56
    • /
    • 2023
  • In this study, the application of ANC (Active Noise Control) technology to address inter-floor noise was explored. To achieve this, an ANC system was developed to manage the heavy impact sound within the frequency range of 40 to 500 Hz. The ANC system utilized an adaptive filter employing a feedforward approach based on the Fx-LMS algorithm. To set up the ANC system, a comprehensive analysis of various variables within the system was performed using computational simulations. This process enabled the identification of optimal filter settings and system configuration arrangements. In addition, the ANC system was implemented in the inter-floor noise test room at the Korea Conformity Laboratories (KCL). Through a certified standard testing procedure, it was confirmed that the ANC system led to a 4 dB reduction in inter-floor noise when the system was activated compared to when it was turned off. The results of this study indicate that the developed ANC system has an effect significant enough to elevate the rating criteria by one level for heavy impact sound.

Method of Multiple Scenario Transformation and Simulation Based Evaluation for Automated Vehicle Assessment (자율주행자동차 평가를 위한 다중 시나리오 변환과 시뮬레이션 기반 평가 방법)

  • Donghyo Kang;Inyoung Kim;Seong-Woo Cho;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.230-245
    • /
    • 2023
  • The importance of evaluating the safety of Automated Vehicles (AV) is increasing with the advances in autonomous driving technology. Accordingly, an evaluation scenario that defines in advance the situations AV may face while driving is being used to conduct efficient stability evaluation. On the other hand, the single scenarios currently used in conventional evaluations address limited situations within short segments. As a result, there are limitations in evaluating continuous situations that occur on real roads. Therefore, this study developed a set of multiple scenarios that allow for continuous evaluation across entire sections of roads with diverse geometric structures to assess the safety of AV. In particular, the conditions for connecting individual scenarios were defined, and a methodology was proposed for developing concrete multiple scenarios based on the scenario evaluation procedure of the PEGASUS project. Furthermore, a simulation was performed to validate the practicality of these multiple scenarios.

Statistical Mistakes Commonly Made When Writing Medical Articles (의학 논문 작성 시 발생하는 흔한 통계적 오류)

  • Soyoung Jeon;Juyeon Yang;Hye Sun Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.4
    • /
    • pp.866-878
    • /
    • 2023
  • Statistical analysis is an essential component of the medical writing process for research-related articles. Although the importance of statistical testing is emphasized, statistical mistakes continue to appear in journal articles. Major statistical mistakes can occur in any of the three different stages of medical writing, including in the design stage, analysis stage, and interpretation stage. In the design stage, mistakes occur if there is a lack of specificity regarding the research hypothesis or data collection and analysis plans. Discrepancies in the analysis stage occur if the purpose of the study and characteristics of the data are not sufficiently considered, or when an inappropriate analytic procedure is followed. After performing the analysis, the results are interpreted, and an article is written. Statistical analysis mistakes can occur if the underlying methods are incorrectly written or if the results are misinterpreted. In this paper, we describe the statistical mistakes that commonly occur in medical research-related articles and provide advice with the aim to help readers reduce, resolve, and avoid these mistakes in the future.

Agricultural tractor roll over protective structure (ROPS) test using simplified ROPS model

  • Ryu-Gap Lim;Young-Sun Kang;Dae-Hyun Lee;Wan-Soo Kim;Jun-Ho Lee;Yong-Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.771-783
    • /
    • 2022
  • In this study, the feasibility of alternative tractor Roll Over Protective Structure (ROPS) designed to evaluate conditions required for testing was confirmed. In accordance with Organization for Economic Cooperation and Development (OECD) code 4, the required load energy of the tractor ROPS was determined. First, the tractor ROPS test was performed and a repeated test was performed using a simplified ROPS as an alternative tractor ROPS. The test procedure is first rearward, second lateral, and last forward based on ROPS. The load test device consists of a load cell that measures force and a LVDT that measures deformation. Precision was confirmed by calculating the relative standard deviation of the simplified ROPS repeated test. Accuracy was analyzed by calculating the mean relative error between the mean measured values in the simplified ROPS test and the tractor ROPS test. As a result, the relative standard deviation was less than 2.5% for force and 3.3% for maximum deformation overall, showed the highest precision in lateral load. The mean relative error value for force measured at the lateral load of simplified ROPS was 0.5%, showing the highest accuracy. In the front load test, the mean relative error of maximum deformation was 20.5%, showing the lowest accuracy. The mean relative error (MRE) was high in the forward load test was because of structural factors of the ROPS. The simplified ROPS model is expected to save money and time spent preparing tractors.