• Title/Summary/Keyword: Testing Temperature

Search Result 1,536, Processing Time 0.037 seconds

A Study on Proficiency Test Sample Development for Environmental & Reliability Testing Field (환경 및 신뢰성 시험분야를 위한 숙련도시험 시료개발 연구)

  • PARK, Kyunghwan;LEE, Cheolgyu
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.447-462
    • /
    • 2017
  • Purpose: This study aims to develop distributable samples that can be used for proficiency testing to verify the ability of the testing laboratory to perform high temperature and low temperature tests. Method: In this study, the temperature-resistance characteristics of the NTC thermistor were used to develop samples. The homogeneity and stability of samples were examined according to the proficiency testing requirements. Results: Thirty samples with homogeneity and stability were developed and used for the proficiency testing. Thus, it was possible to distinguish between the test laboratories that showed satisfactory results and those that did not. Conclusion: It was the first time to develop samples that can be used for proficiency testing in high temperature and low temperature tests. and it was proved that the proficiency test program can be operated using the characteristics of NTC thermistor.

Investigation of the ASTM International frost heave testing method using a temperature-controllable cell

  • Hyunwoo, Jin;Jangguen, Lee;Byung-Hyun, Ryu
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp. 583-597
    • /
    • 2022
  • Frost heave can cause uneven ground uplift that may damage geo-infrastructure. To assist damage-prevention strategies, standard frost heave testing methods and frost susceptibility criteria have been established and used in various countries. ASTM International standard testing method is potentially the most useful standard, as abundant experimental data have been acquired through its use. ASTM International provides detailed recommendations, but the method is expensive and laborious because of the complex testing procedure requiring a freezing chamber. A simple frost heave testing method using a temperature-controllable cell has been proposed to overcome these difficulties, but it has not yet been established whether a temperature-controllable cell can adequately replace the ASTM International recommended apparatus. This paper reviews the applicability of the ASTM International testing method using the temperature-controllable cell. Freezing tests are compared using various soil mixtures with and without delivering blow to depress the freezing point (as recommended by ASTM International), and it is established that delivering blow does not affect heave rate, which is the key parameter in successful characterization of frost susceptibility. As the freezing temperature decreases, the duration of supercooling of pore water shortens or is eliminated; i.e., thermal shock with a sufficiently low freezing temperature can minimize or possibly eliminate supercooling.

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy (Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

Temperature Distribution Monitoring of Transformer Using IRR-Camera (적외선방사카메라를 이용한 변압기 온도분포 모니터링)

  • 이우선;정찬문;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.459-462
    • /
    • 2002
  • The conventional thermal insulator and power transformer testing is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also thermal testing is able to offer the standard judgement of relative degradation level of outside HV machine. There it is very useful method compare to previous conventional thermal testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, thermal testing of Power transformer is measured with partial temperature distribution in real time.

  • PDF

Temperature Distribution Monitoring of Transformer (변압기 온도 변화특성 모니터링)

  • Lee, Woo-Sun;Jung, Chan-Moon;Son, Dong-Min;Seo, Young-Jin;Lim, Jang-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.69-72
    • /
    • 2002
  • The conventional thermal insulator and power transformer testing is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also thermal testing is able to offer the standard judgement of relative degradation level of outside HV machine. There it is very useful method compare to previous conventional thermal testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, thermal testing of power transformer is measured with partial temperature distribution in real time.

  • PDF

Study of WMA Additive's Compaction Characteristics in Terms of Temperature Change by Using DSR (DSR을 이용한 온도변화에 따른 중온화 첨가제의 다짐특성 연구)

  • Hwang, Sung-Do;Lee, Sang Jae;Cho, Dong-Woo;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to develop a method to evaluate the compaction effects of asphalt binders using WMA additives and compare their compaction effects on two types of WMA additives, two types of testing temperatures, and three types of asphalt film thicknesses. METHODS : This study is based on laboratory experiments and rheological analysis of the experimental results. Testing materials are aggregate disks, asphalt, and WMA additives. The main testing method is the stress sweep test by using dynamic shear rheometer (DSR). In addition, the testing parameters obtained from the stress sweep results to evaluate lubrication effects are complex modulus and LVE-Limit. RESULTS : At both the first compaction condition ($110^{\circ}C$, 0.3mm) and second compaction condition ($80^{\circ}C$, 0.2mm) assumed, LEADCAP showed better compaction effects than Sasobit. CONCLUSIONS : The temperature $30^{\circ}C$ lower than general compaction temperatures can provide a better sensitivity for the evaluation of compaction effects. If a testing temperature and film thickness are grouped for the proper compaction conditions in the testing results, the compaction performance of each WMA additive can be more clearly discriminated in the grouped testing results matched with the grouped conditions.

Temperature Distribution of Tracking Degradation Using IRR-Camera (적외선방사카메라를 이용한 트래킹열화 온도분포)

  • Jeong, Seung-Chun;Lim, Jang-Seob;Chen, Jong-Cheol;Jung, Woo-Seong;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.59-63
    • /
    • 2000
  • The conventional tracking testing as IEC-60587 is widely used in surface aging measurement of outside insulator because those testing can carry out very short time in Lab testing. Also IEC-60587 testing is able to offer the standard judgement of relative degradation level of outside HV machine. Therefore it is very useful method compare to previous conventional tracking testing method and effective Lab testing method. But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IIR-camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this study, SD occurred from IEC-60587 is measured with partial temperature distribution in real time, the degradation grade of SD is analyzed through produced patterns in IEC-60587 according to applied time.

  • PDF

The Effects of the Annealing Heat Treatments and Testing Temperatures on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리와 시험온도의 영향)

  • Won, Si-Tae;Kim, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.167-176
    • /
    • 2001
  • The effects of heat treatments and testing temperatures on the mechanical properties of Invar materials were investigated through experiments, which call influence the formability in metal forming fields. Annealing temperatures were changed from $900^{\circ}C$ to $1200^{\circ}C$ with an increment of $100^{\circ}C$ under two different furnace atmosphere(vacuum and H$_2$gas). Microstructure and hardness tests were performed for annealed specimens at room temperature(RT) and tensile tests were also performed by changing annealing temperatures as well as testing temperatures from RT to $300^{\circ}C$. The grain size of annealed materials increased with increasing annealing temperature, while micro-hardness distributions showed almost same hardness values regardless of annealing temperatures. Strength ratio (tensile/yield strength), which influences the forming characteristics of sheet metal, remained almost constant for various experimental conditions in case of unannealed specimens. However, it showed increasing tendency with increasing both annealing and testing temperatures, particularly at the testing temperature higher than $200^{\circ}C$. Therefore it can be concluded that press formability of fully-annealed Invar material can be improved by warm forming technique.

  • PDF

LIQUID PENETRANT TESTING AT LOW TEMPERATURE (저온에서 행하는 액체침투 탐상방법)

  • Barbier, R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 1983
  • Tests on Liquid Penetrant products normally utilized in the temperature range $10^{\circ}C\;to\;40^{\circ}C$ have shown that the required sensibility can not be obtained at temperatures lower than $10^{\circ}C$ with the penetration and development time usually specified in the operating procedures. It is thus confirmed that $10^{\circ}C$ is the lowest allowable temperature for use of these products. The results obtained with a penetrant and develope. specially formulated for low temperatures (SHERWIN B 305+D100) are satisfactory between $0^{\circ}C\;and\;15^{\circ}C$.

  • PDF

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.