The conventional testing as IEC-60587 is widely used in surface aging measurement of outside insulator those testing can carry out very short time in Lab testing. Also IEC-60587 testing is able to offer the standard judgement of relative degradation level of out side HV machine. Therefore it is very useful method compare to previous conventional tracking testing method and effective Lab testing method, But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR Camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis.
This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces
One of the major obstacles in testing or evaluating precisely the thermal behavior of a machine tool is the difficulty in measuring the heat transfer coefficients on the surfaces by a conventional method. This paper presents a new approach based on the inverse method to identify the values of heat transfer coefficients by using temperature changes measured on the surfaces of a machine tool during a short period in its operating. In the present method, a machine tool structure is modeled by the finite element method and the characteristic curves of the temperature change at several points on machine tool surfaces are theoretically derived in the form that they contain the heat transfer coefficient as an unfixed heat source are approximated so that the theoretical characteristic curves of temperature change fit the measured ones as closely as possible.
The purpose of this research is to propose a set of basic guidelines for the construction of English test suites, a set of basic guidelines for the construction of Korean test suites to objectively evaluate the performance of machine translation systems. For this end, we constructed 650 English test sentences, 650 Korean test sentences, and developed the statistical methods and tools for the comparative evaluation of the English-Korean machine translation systems. It also evaluates the existing commercial English-Korean machine translation systems. The importance of this research lies in that it will promote an awareness of the importance and need of testing machine translation systems within the Natural Language Community. This research will also make a big contribution to the development of evaluation methods and techniques for appropriate test suites for Korean information processing systems. The results of this research can be used by the natural language community to test the performance and development of their information processing systems or machine translation systems.
수면 장애 중 폐쇄성수면무호흡증은 비교적 흔한 질병 중 하나이다. 환자들은 수면다원검사를 통해 해당 질환의 여부를 알아볼 수 있다. 그러나 수면다원검사를 이용한 폐쇄성수면무호흡증 진단에 관한 한, 늘어나는 환자 수, 비싼 검사 비용, 검사 중 불편함, 수용 인원 제한 등 현실적인 문제점들이 지적됐다. 이에 따라, 수면다원검사를 대체할 목적으로 연구자들은 생체 신호를 활용한 기계학습 기반 폐쇄성수면무호흡증 진단 연구들을 활발히 진행해 왔다. 이 시점에서, 우리는 생체 신호 데이터를 기반으로 기계학습 기법을 적용하는 폐쇄성수면무호흡증 진단 연구를 복기한다. 그 결과, 본 논문은 복기 된 연구들에 대한 최신 분류 체계를 제시하고 그 연구들의 종합적인 비교 분석 결과를 제공한다. 또한, 본 논문은 생체 신호를 활용한 연구들의 다양한 한계점을 밝히고 사용된 기계학습 기법의 활용성에 대한 여러 개선점을 제안한다. 끝으로, 본 논문은 생체 신호를 활용한 기계학습 기법 적용과 관련한 향후 연구 주제를 제시한다.
The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.
본 논문에서는 H사와 공동으로 개발한 가정용 비만치료기의 특징과 치료효과를 측정, 분석한 것이다. 이 가정용 비만치료기는 중주파 활용, 온열벨트 사용과 함께 부작용을 최소화하도록 설계되었는데 성능평가를 위해 20대 여성 8명을 대상으로 1개월 간의 비만치료 실험을 실시하였다. 실험은 심폐기능운동검사를 통하여 피실험자들의 비만치료 실험 전후의 가스교환 반응도($VCO_2$와 $VCO_2$양의 변화)에 초점을 두었다. 실험결과 체중(${\cal}kg$), 체지방율($\%$), 체지방량(${\cal}kg$), 비만도($\%$), 기초대사량(kcal) 등에서 비만감소 효과가 나타났으며 비만치료 전보다 산소($VCO_2$) 섭취량은 증가한 반면 이산화탄소($VCO_2$) 배출량은 감소한 것으로 나타났다. 이는 인체의 생리학적측면과 운동 역학적인 측면이 상관관계가 높다는 것을 보여주고 있으며 여기서 개발된 비만치료기가 의학적으로 비만치료에 도움이 될 수 있음을 입증하는 결과라 할 수 있다.
This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.
As the geotechnical technologies have grown, the size of civil structures has become bigger than before, thereby requiring large-scale geotechnical testing equipments which can evaluate the mechanical behavior of large size testing materials such as gravel, crushed rock and so on. These kind of large testing equipments are usually used to evaluate the mechanical characteristics of large size material which are applied in the large infra structures like dam, seashore structure, coastal landfill, soil-structure interaction and seismic response of large-scale structure. In this research, state-of-the-art information in the field of geotechnical engineering was collected and summarized for such large-scale experimental equipments as large-scale geo-centrifuge, large-scale triaxial testing machine, large-scale direct shear testing apparatus and large-scale oedometer.
본 논문에서는 최근 뛰어난 예측력으로 각광받는 최소제곱 Support Vector Machine(Least Square Support Vector Machine: LS-SVM)과 First Principle(FP)을 결합한 하이브리드 최소제곱ㆍSupport Vector Machine 모델, HLS-SVM(Hybrid Least Square-Super Vector Machine)을 제안한다. 제안한 모델인 하이브리드 최소제곱 Support Vector Machine을 기존의 방법인 하이브리드 신경망(Hybrid Neural Network:HNN), 비선형 칼만필터와 하이브리드 신경망을 결합한 HNN-EKF (Hybrid Neural Network with Extended Kalman Filter) 모델과 비교해 보았다. HLS-SVM 모델은 학습 및 validation 과정에서는 HNN-EKF와 근사한 성능을 보였고, HNN 보다는 우수한 결과를 보였고, 일반화 성능에서는 HNN-EKF에 비해 3배, HNN보다 100배정도 우수한 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.