• Title/Summary/Keyword: Test temperatures

Search Result 1,767, Processing Time 0.026 seconds

Effects of a Footbath Program on Heart Rate Variability, Blood Pressure, Body Temperature and Fatigue in Stroke Patients (족욕프로그램이 뇌졸중 환자의 심박변이도, 혈압, 체온 및 피로에 미치는 효과)

  • Son, Yu Lim;Yoo, Myung Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study was to examine the effects of a footbath program on heart rate variability, blood pressure, body temperature and fatigue of stroke patients with stroke-induced hemiparesis. Methods: A non-equivalent control group pretest-posttest design was used. Participants were 40 stroke patients, twenty for the footbath program and twenty for the control group, who were hospitalized in a long-term rehabilitation hospital in G city of Korea, from February to April 2014. The twenty participants in the experimental group received the intervention of footbaths and an educational program focused on the prevention of stroke complications; Collected data were analyzed by the IBM SPSS WIN 20.0 program using a t-test, ${\chi}^2$ test, Mann-Whitney U test and repeated measures ANOVA. Results: Significant differences were found in heart rate variability, systolic blood pressure, hand and foot temperatures and fatigue between the two groups. But no significant differences were found in diastolic blood pressure, core temperatures, forehead temperatures, and hand temperatures between the two groups. Conclusion: The footbath program was an effective intervention for skin temperature change and fatigue reduction for stroke patients. Therefore, it is recommended that the footbath program can be utilized as an effective nursing intervention for stroke patients in long-term rehabilitation care hospitals.

Evaluation of Concentration and Visual Discrimination according to the Color Temperatures of LED Illumination (LED 조명의 색온도에 따른 집중도 및 시각적 변별력 평가)

  • Lee, Soon-Duk;Kim, Chae-Bogk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.3
    • /
    • pp.23-33
    • /
    • 2011
  • This study investigates the evaluation on simple comparison and seeking hidden figures works under LED illumination conditions according to three types of color temperatures (7000K, 5000K, 3000K) in the classroom, Since the objective of this study is to develop an electric lighting conditions suitable for students in the classroom, the performance of concentration and visual discrimination by students under three types of LED illumination conditions were analyzed. The 4 kinds of simple tests concerning with concentration and 2 types of tests for visual discrimination were developed, and test results under natural light and LED illumination by 3 types of color temperatures were analyzed. There were differences on concentration as well as visual discrimination performance in most cases by t-test ($p{\leq}0.05$). For further analysis among three types of color temperatures and natural light, ANOVA tests were performed. The test results shows that illumination condition plays an important role when students try to concentrate on simple comparison of characters, figures or colors and seek hidden figures. The experimental results of this study might be applied to designing better luminous environment.

  • PDF

Properties and durability of concrete with olive waste ash as a partial cement replacement

  • Tayeh, Bassam A.;Hadzima-Nyarko, Marijana;Zeyad, Abdullah M.;Al-Harazin, Samer Z.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • This research aims to study the utilization of olive waste ash (OWA) in the production of concrete as a partial substitute for cement. Effects of using OWA on the physical and mechanical properties of concrete mixtures have been investigated. This is done by carrying out tests involving the addition of various percentages of OWA to cement (0%, 5%, 10% and 15%). For each percentage, tests were performed on both fresh and hardened concrete; these included slump test, unit weight test and compressive strength test after 7, 28 and 90 days. Durability tests were investigated in solutions containing 5% NaOH and MgSO4 by weight of water. In addition, resistance to high temperatures was tested by subjecting the cubes to high temperatures of up to 170℃. The results of this research indicate that a higher percentage of OWA gives a lower compressive strength and lower workability but higher performance in terms of durability against both different weather conditions and high temperatures.

Sealing Integrity of polymeric ZnO Surge Arresters (고분자 피뢰기의 기밀특성에 관한 연구)

  • Liang, He-Jin;Han, Se-Won;Cho, Han-Goo;Kim, In-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.258-261
    • /
    • 1997
  • The sealing integrity is related to the safe operation of arrester the prime failure reason of porcelain housed arresters is moisture ingress. To be a meaningful tests a polymer arrester sealing test must be a realistic acceleration of field service. We think the test should be an accelerating course of actual temperatures, the enduring property to mechanical load and temperatures should be considered together. A union test method consisting of the thermal mechanical test and thermal cycling test is proposed to test the sealing integrity of polymeric arresters, which uses dielectric loss, leakage current 1mA DC voltage and partial discharge as the diagnostic techniques, and the test results were presented. The comparison states that the TMTCUT method is suitable fur the test of sealing integrity of polymeric arresters. .

  • PDF

Determination of Lamellar Tearing Initiation Temperatures and the Effect of Non-metallic Inclusions on Tear (라멜라균열의 생성온도와 비금속개재물의 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 1992
  • This study was aimed at resolving uncertainties about lamellar tearing initiation temperatures and studying the effect of nonmetallic inclusions on the tear initiation. In order to measure the lamellar tearing initiation temperature, the slice bend test was conducted in the temperature range of 20.deg.C to 425.deg.C on A572 Grade 50 and A588 Grade A steels. In addition, the weld restrain test was carried out to measure directly the tear initiation temperature with A572 steel. In slice bend tests, A572 steel showed the most susceptible region to lamellar tearing to be in the range of 100 to 300.deg.C, where the steel showed the minimum ductility. The observed tear initiation by the weld restraint test was to be in the range of 200to 300.deg.C. The tears became narrower and less rounded at the susceptible temperatures. It was confirmed in this study that lamellar teraring initiated during cooling from welding in the range of 200 to 300.deg.C and they were initiated by strain aging embrittlement.

  • PDF

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

Effects of Temperature on Tribological Properties of Polymer Material (온도 조건에 따른 폴리머 소재의 트라이볼로지 특성 연구)

  • Chi-Yoon An;Dae-Eun Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.262-267
    • /
    • 2023
  • Research to replace metal mechanical elements with polymer materials has recently accelerated. However, polymers exhibit less favorable mechanical properties than metal materials, and are often easily worn-out owing to frictional heat when their mechanical elements contact while in relative motion. Therefore, research on the polymer tribological properties is required to employ polymer materials in mechanical elements operating under harsh conditions. In this study, we examine the effect of mechanical part operating temperatures on the material friction and wear characteristics of polymer materials. We conduct ball-on-disk friction tests under dry conditions at various temperatures, using a metal ball with high hardness and a polymer as the counter surface. Each test is repeated at least three times to ensure the reliability of the test results. Before the friction test, we analyze the surface hardness and roughness of each polymer specimen; after the friction test, we use a three-dimensional confocal microscope to compare and analyze the polymer specimen wear characteristics. Based on this study, we systematically elucidate the polymer material tribological characteristics. This information should be useful for selecting and utilizing polymer materials at various temperatures.

Material Properties of ETFE Membrane under Various Temperature (온도변화에 따른 ETFE 막재의 재료특성 연구)

  • Kim, Young-Ho;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2011
  • It is needed to investigate the material properties of ETFE foil under various temperatures because ETFE membrane foils have very thin depth and relatively high flexibility. In this paper, the material properties of ETFE membrane foil obtained from 3 testes under various temperatures are presented. First, the uniaxial test under four temperatures as -20$^{\circ}C$, 0$^{\circ}C$, +20$^{\circ}C$ and +40$^{\circ}C$ was performed. Each 5 specimen was tested and the yield stress, tensile strength and the Young's modulus of the foils are obtained. Second, the creep testes under three temperatures as 25$^{\circ}C$, 40$^{\circ}C$ and 60$^{\circ}C$, 3MP, 6MP and 9MP tension load was subjected to the specimen and the creep characteristics was investigated. Finally, the tear test under $5^{\circ}C$, $^0{\circ}C$ and $20^{\circ}C$ was performed. It is concluded that the shape of stress-strain curve or general behaviors are similar with that of normal temperatures but the mechanical characteristics of ETFE membrane foils were affected by the temperatures, obviously.

Analysis of Notched Bar Tensile Tests for Inconel 617 at Room and Elevated Temperatures (Inconel 617 노치시편의 상온 및 고온 인장실험 해석)

  • Oh, Chang-Sik;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1818-1823
    • /
    • 2007
  • In this paper, notched bar tensile tests of Inconel 617 were performed at room ($20^{\circ}C$) and elevated ($800^{\circ}C$) temperature. Finite element analyses are also performed. It is found that, at the room temperature, smooth bar tensile test results could be used to simulate notched bar tensile tests. However, at the elevated temperature, notched bar tensile test results can not be simulated from smooth bar tensile test results. Metallurgical examination reveals that strength weakening results from many cavities over the specimens for smooth bar test at the elevated temperature. "True" tensile properties at the elevated temperature is found using FE simulations. It also suggests that cautious should be taken to determine tensile properties of Inconel 617 at elevated temperatures using smooth bar tests.

  • PDF