• Title/Summary/Keyword: Test of constructability

Search Result 99, Processing Time 0.043 seconds

A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways (사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구)

  • Cho, Nam-Hyun;Kim, Dong-Chul;Phi, Seung-Woo;Shin, Joong-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon;Jin-Hee Ahn;Hong-duk Moon;Kwang-Il Cho;Jungwon Huh
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.377-389
    • /
    • 2023
  • In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

An Experimental Study on Insulation and Preventing Condensation Performance of Ventilated Curtain Wall (Mock-up 실험을 통한 통기성 커튼월의 단열 및 결로방지 성능평가)

  • Lee, Mi-Jin;Lee, Sun-Woo;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1081-1086
    • /
    • 2006
  • Curtainwall systems has been applied to buildings widely for constructability. However, as cutainwall system include many building materials, they become to damaged vapor barrier and incur condensation. Natural ventilation of an air cavity in a curtainwall is expected to be an prevention of condensation in inner wall and reduce cooling energy in summer. The objective of this experimental study is to evaluating the insulation and condensation Performance of ventilated curtainwall with ventilated cavity depth and ratio of opening area.

  • PDF

Application of Ventilated Cavity for Enhancing Insulation and Preventing Condensation of Curtain-wall System (커튼월의 단열 향상 및 결로 방지를 위한 통기구조 적용방안 연구)

  • Lee, Sunwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Curtain-wall systems have been widely applied to buildings because of their lightweight and constructability characteristics. However, as curtain-wall systems include many building materials, vapor barriers can become damaged and condensation can occur. Due to the material properties of stone curtain-walls, the external appearance and structure of a building could be damaged and the insulating performance of the curtain-wall could be worse. Natural ventilation using an air cavity in a curtain-wall is expected to be effective for the prevention of condensation in inner walls and for the reduction of building cooling energy use in the summer. The purpose of this experimental study is to analyze the influence of a ventilated cavity on the insulating performance of a curtain-wall and the ventilated cavity depth and ratio of top opening needed to prevent condensation in a curtain-wall.

A Study on Cold-Weather Curing Quality Management Based on Using Energy Saving Electronic Heater (에너지 절감형 전기히터를 활용한 동절기 양생품질 관리방안)

  • Jo, Man-Ki;Hong, Sung-Min;Park, Jong-Hun;Kim, Jin-Sik;Lee, Dong-Hyun;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.109-110
    • /
    • 2020
  • In This study, we tried to review an efficient curing method in consideration of safety and constructability among the problems of winter construction. In other words, as a result of the mock-up test, the measured value of carbon monoxide was 0 ppm in the case of an electric hot air fan. Since there is no carbon monoxide, problems such as suffocation are expected to be solved. In terms of temperature characteristics, electric hot air fans exhibited high thermal efficiency performance with a slight difference in upper/lower temperatures compared to the existing ones. In the future, we plan to conduct thermal efficiency evaluation through actual site performance verification. We will propose an efficient curing method through applicability evaluation.

  • PDF

A Comparative Study of Tensile Strength of Architectural Membrane using Basalt Fiber (현무암섬유 기반 건축용 막재의 강도 비교 연구)

  • Kim, Ji-Hyeon;Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.149-150
    • /
    • 2016
  • The membrane structure is being applied in structures for various uses for its many advantages as permeableness, lightweightness, constructability, resource saving, and management cost reduction, and the usage is being expanded. However, despite the development of membrane structure, the standard for architectural membrane performance that considered fire safety is still inadequate. Therefore, this study applied basalt fiber with flame resistance on architectural membrane. Also, this study confirmed the membrane applicability of basalt fiber through comparison with existing architectural membrane.

  • PDF

Performance of Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 프리캐스트 콘크리트 보-기둥 접합부의 거동 연구)

  • Kim, Kyu-Rhee;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.619-622
    • /
    • 2004
  • In this study, a moment resisting precast concrete beam-column connection is proposed. An experimental study was carried out to investigate the connection behavior subjected to cyclic loading. Three precast beam-column interior connections and one monolithic connection were tested. Variable included the detailing used at the joint to achieve structural constructability and the location of mild steel reinforcement and high strength bar. During specimen fabrication, the joint details enables ease and speed of construction. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. Based on test results, the precast concrete beam-column connection is capable of matching or exceeding the performance of the monolithic connection.

  • PDF

Trial Construction of FRP-Concrete Composite Deck for Cable-Stayed Bridge (사장교용 FRP-콘크리트 합성바닥판의 시험시공)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Keun-Hee;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.43-44
    • /
    • 2010
  • We developed a new FRP-concrete composite deck applicable to a cable-stayed bridge, and applied to a trial bridge for test purpose. From this trial construction, we verified constructability and structural performances of this deck system.

  • PDF

Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus (고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성)

  • Chang, Sang Mook;Kim, Yun Ho;Choi, Sung Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Basic Study on Development of Ultra-high Strength Grout for Offshore Wind Turbines (해상풍력 발전기용 초고강도 그라우트 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Ha, Sang-Su
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.155-160
    • /
    • 2015
  • The annual average of energy sources is continuously increasing at a rate of 5.8%, and particularly, the power generation proportion of new/renewable energy is increasing significantly. Furthermore, South Korea has established a national energy master plan for 2008-2030 and is aiming at obtaining approximately 11% of total energy production from the wind turbine sector. Although offshore wind turbines are similar to wind turbines installed on land, they require materials with excellent dynamic properties and durability to prevent damage due to seawater at the lower parts and connecting parts. The lower parts of wind turbines are submerged in seawater, and the upper and lower parts are connected by filling the connecting part with grout. This paper describes the test results of the process of determining the mix ratios to develop ultra-high grout for offshore wind turbines. There is virtually no relevant technology regarding grout for offshore wind turbines in South Korea that can be referenced for the process of determining the mix ratios. Therefore, tests were conducted for determining compression strength, elastic modulus, flexural strength, density, constructability (floor test), and early strength by referencing a high-performance grout produced in South Korea, and the mixing process for achieving the goal strengths was described using the Korean Industrial Standards (KS) as the reference.